**Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?**

Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur GraphSearch.

Concept# Catégorie de modèles

Résumé

En mathématiques, plus précisément en théorie de l'homotopie, une catégorie de modèles est une catégorie dotée de trois classes de morphismes, appelés équivalences faibles, fibrations et cofibrations, satisfaisant à certains axiomes. Ceux-ci sont abstraits du comportement homotopique des espaces topologiques et des complexes de chaînes. La théorie des catégories de modèles est une sous-branche de la théorie des catégories et a été introduite par Daniel Quillen en 1967 pour généraliser l'étude de l'homotopie aux catégories et ainsi avoir de nouveaux outils pour travailler avec l'homotopie dans les espaces topologiques.
Ces dernières décennies, le langage des catégories de modèles a été utilisé en K-théorie algébrique et en géométrie algébrique, où les approches homotopiques ont mené à des résultats profonds.
Motivation
Les catégories de modèles fournissent un formalisme naturel pour la théorie de l'homotopie. On peut munir les espaces topologiques d'une structure de catég

Source officielle

Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Publications associées

Chargement

Personnes associées

Chargement

Unités associées

Chargement

Concepts associés

Chargement

Cours associés

Chargement

Séances de cours associées

Chargement

Publications associées (14)

Personnes associées (2)

Chargement

Chargement

Chargement

Concepts associés (13)

Ensemble simplicial

En mathématiques, un ensemble simplicial X est un objet de nature combinatoire intervenant en topologie. Il est la donnée :

- d'une famille (X) d'ensembles, indexée par les entiers naturels, les élém

Homotopy category

In mathematics, the homotopy category is a built from the category of topological spaces which in a sense identifies two spaces that have the same shape. The phrase is in fact used for two different

Dualité (mathématiques)

thumb|Dual d'un cube : un octaèdre.
En mathématiques, le mot dualité a de nombreuses utilisations.
Une dualité est définie à l'intérieur d'une famille d'objets mathématiques, c'est-à-dire qu'à tout

Cours associés (1)

MATH-436: Homotopical algebra

This course will provide an introduction to model category theory, which is an abstract framework for generalizing homotopy theory beyond topological spaces and continuous maps. We will study numerous examples of model categories and their applications in algebra and topology.

Unités associées (2)

Séances de cours associées (18)

Chapter 2(a): Definition and elementary properties of model categories

Ep 17: Elementary properties of model categories

Chapter 2(c): The homotopy category of a model category

Ep 24: Fibrant and cofibrant replacements

The starting point for this project is the article of Kathryn Hess [11]. In this article, a homotopic version of monadic descent is developed. In the classical setting, one constructs a category D(𝕋) of coalgebras in the Eilenberg-Moore category of algebras D𝕋 for a given monad 𝕋 on a category D. There is a canonical functor Can𝕃𝕋 from D to D(𝕋), and if Can𝕃𝕋 is fully faithful, then 𝕋 satisfies descent, while if Can𝕃𝕋 is an equivalence of categories, then 𝕋 satisfies effective descent [19]. In [11], these two conditions are replaced by a weaker one, that these hold only up to homotopy. This is achieved by working with model categories that are enriched over simplicial sets. Homotopic descent is then defined by demanding that each component in (Can𝕃𝕋)A,B : MapD(A,B) → MapD(𝕋) (Can𝕃𝕋(A), Can𝕃𝕋 (B)) be a weak equivalence of simplicial sets. A similar but stronger condition involving the path components in D(𝕋) expresses effective homotopic descent. The first goal of this project is to develop a framework of homotopic descent for model categories that are enriched over model categories other than simplicial sets. The most important examples we have in mind are chain complexes and spectra. In order to achieve this goal, we tried to determine the most general conditions that are sufficient and necessary to make the theory work. To ease the formulation, let us say that we are working with a model category D that is enriched over a monoidal model category V. The crucial constructions we need are realization, respectively totalization, of (co)simplicial objects in D. These functors have to be Quillen functors to ensure that they have the correct homotopical behaviour. This implies that there must exist a Quillen adjunction between V and simplicial sets. Furthermore, we need to be able to transfer the enrichment and (co)tensoring over V to an enrichment and (co)tensoring over simplicial sets. This forces the Quillen adjunction to be monoidal. Another main point that has to be adressed is the question, of whether the enrichment of D carries over to an enrichment of D𝕋 and D(𝕋) and how this enrichment behaves. It turns out that this works well under mild assumptions on V. This leads then to the definition of homotopic descent by requiring that each component in (Can𝕃𝕋)A,B : MapD(A,B) → MapD(𝕋) (Can𝕃𝕋(A), Can𝕃𝕋 (B)) be a weak equivalence in M and similarly for effective homotopic descent. Using this definition, the theorems in [11] carry over to this more general context. Although the conditions on V are rather constraining regarding the relation with simplicial sets, the cases of chain complexes and spectra are included. For the time being we do not see how the constraints on V could be weakened. The second goal of this project is to apply the theory of homotopic descent to concrete examples. A good source of examples is homotopic Grothendieck descent in the category of spectra, i.e., S-modules. Classical Grothendieck descent deals with the adjunction induced by a morphism φ : B → A of monoids in a monoidal category (M,Λ, S), – BΛ A : ModB ⇄ ModA : φ*, which in turn induces a monad 𝕋φ := φ*(– ΛB A) on ModB. We consider in particular the case when the morphism in question is the unit of an S-algebra E, η : S → E There is a close relationship between comodules over a Hopf algebroid and objects in D(𝕋η). Associated to η we have the canonical co-ring Wη := E ΛS E and an isomorphism between D(𝕋η) and the category of comodules over Wη in the category of S-modules. This relationship is explored in an analysis of the stable Adams spectral sequence, the construction of which heavily relies on the monadic properties of the functor η*(E ΛS –) and can therefore be expressed in terms of D(𝕋η). We construct a spectral sequence that generalizes the stable Adams spectral sequence to any stable pointed model category such as unbounded chain complexes. One can give a description of the E2-term as an Ext in D(𝕋η), E2s,t = ExtD(𝕋η) (Can(A), Can(B)). If the spectral sequences converges, it abuts to π⁎MapD(A,B η^), where Bη^ is the derived 𝕋η-completion of B, which agrees with the usual derived completion in well-known special cases. Furthermore, Bη^ := Tot B^•, and B^• is kind of a fibrant cosimplicial resolution of B. Furthermore, the language of relative homological algebra for modules and comodules generalizes to definitions for algebras in D𝕋η and coalgebras in D(𝕋η). This shows that the construction of the Adams spectral sequence works in a more general setting, where one applies a functor to an abelian category, for example π⁎, only at the end, to be able to do computations in homological algebra. This general Adams spectral sequence is closely related to the descent spectral sequence of [11], and we have clarified this relationship.

The goal of this work is to study Alexander-Whitney coalgebras (first defined in [HPST06]) from a topological point of view. An Alexander-Whitney coalgebra is a coassociative chain coalgebra over Z with an extra algebraic structure : the comultiplication must respect the coalgebra structure up to an infinite sequence of homotopies (this sequence is part of the data of the Alexander-Whitney coalgebra structure). Alexander-Whitney coalgebras are interesting for topologists because the normalized chain complex C(K) of a simplicial set K is endowed with an Alexander-Whitney coalgebra structure. This theorem is proved for the first time here (generalising a result proven in [HPST06]). This theorem gives the hope that the Alexander-Whitney coalgebra structure of C(K) contains interesting information that can be used to solve topological problems. This hope is strengthened by the success already obtained in the work of several topologists. Among others, [HPST06], [HL07], [Boy08], and [HR] use the Alexander-Whitney coalgebra structure of the normalized chains of a simplicial set in an essential way to solve topological problems. This thesis begins with some background material. In particular, the definition of a DCSH morphism between two coassociative chain coalgebras is recalled in complete detail. For example, signs are determined with great precision. Next we devote a chapter to the definition of Alexander-Whitney coalgebras and to their importance in topology. In the following chapter we begin the conceptual study of Alexander-Whitney coalgebras. A global study of these objects had not yet been carried out even if the Alexander-Whitney coalgebra structure has been studied and used in order to answer some specific questions. With the aim of studying Alexander-Whitney coalgebras in a nice setting, we develop an operadic description of these coalgebras in the following chapter. More precisely, we show that there is an explicit operad AW such that the coalgebras over this operad are exactly the Alexander-Whitney coalgebras. Furthermore, AW is shown to be a Hopf operad, so that the category formed by the Alexander-Whitney coalgebras is actually a monoidal category. These results are proven in a reasonably general framework. In fact, we associate an operad to each bimodule (over the associative operad) of a certain type, such that we get AW if this bimodule is well chosen. In particular, these results enable us to study Alexander-Whitney coalgebras from the standpoint of operads. This strategy is recognised to be successful in various mathematical situations, and especially in algebraic topology. Moreover, we develop a minimal model notion in the setting of right module over a chosen operad (which has to satisfy some reasonable conditions), with the aim of applying this result to the special case of the Alexander-Whitney coalgebras. This is possible because coalgebras over some fixed operad P can be seen as right modules over P. And the category of right modules over P has some nice features which do not appear to hold in the category of P-coalgebras. The inspiration for this part of our work comes from the notion of minimal model developed in the framework of rational homotopy theory. The two following facts show that it is reasonable to try to adapt some ideas of rational homotopy theory to the category of Alexander-Whitney coalgebras. A. There is a theorem that says that studying topological spaces up to rational equivalences is, essentially, equivalent to studying cocommutative chain coalgebras over the field of rational numbers. This is false if the ring of integers replaces the field of rational numbers, but Alexander-Whitney coalgebras are "almost" cocommutative in the sense which is explained in this thesis. B. It could be that the Alexander-Whitney coalgebra structure of the normalized chains of a simplicial set is weak enough to allow explicit computations. At least, it is clear that the Alexander-Whitney coalgebra structure on the normalized chains is far from being an E∞-structure (such a structure determines the homotopy type of the considered simplicial set, at least under some conditions). The chapter about minimal models in the framework of right modules over an operad includes an existence theorem and a discussion of the unicity of this model. In the second part of this chapter, we construct an explicit path-object in the model category of right modules over an operad. This path-object is then used to investigate the topologically relevant information that could stem from the minimal model in the case of the operad AW. Finally, we present and examine some interesting open questions about Alexander-Whitney coalgebras. These questions give a nice outlook on future research in this area.

We prove that the category of rational SO(2)-equivariant spectra has a simple algebraic model. Furthermore, all of our model categories and Quillen equivalences are monoidal, so we can use this classification to understand ring spectra and module spectra via the algebraic model.