Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Couvre le choix du portefeuille de variance moyenne, les modèles factoriels, l'APT, le ratio Sharpe, les anomalies de taille et de valeur, les modèles Fama et français et la recherche factorielle.
Couvre la méthode Quadratic Sieve pour la factorisation entière, soulignant l'importance de choisir les bons paramètres pour la factorisation efficace.
Plonge dans les relations entre les troubles de l’humeur, la performance cognitive et la plasticité du cerveau en milieu urbain, en utilisant les données de cohortes médicales.
Introduit une analyse exploratoire des données en santé environnementale, couvrant sa définition, ses techniques et ses applications dans l'analyse des données géoréférencées sur la santé.
Couvre les principes fondamentaux de la science des données, en mettant l'accent sur la profondeur et l'application pratique dans l'apprentissage automatique et l'analyse de données.