Concept

Fonction de couplage

En mathématiques, une fonction de couplage, est une méthode permettant d’attribuer de manière unique un entier naturel à un couple d'entiers naturels. En théorie des ensembles, on peut utiliser n'importe quelle fonction de couplage pour prouver que l'ensemble des entiers relatifs et celui des nombres rationnels ont la même cardinalité que l'ensemble des entiers naturels. En théorie de la calculabilité, la fonction de couplage de Cantor est utilisée pour coder k-uplets, ainsi une fonction de Nk → N peut être représentée par une fonction de N → N. Une fonction de couplage est une bijection calculable de N × N dans N. La fonction de couplage de Cantor est définie par Le théorème de Fueter-Pólya énonce que cette fonction est, avec la fonction , la seule fonction de couplage quadratique. En revanche, savoir s'il s'agit de la seule fonction polynomiale de couplage est encore une question ouverte. On note parfois le résultat de la fonction de couplage sur les entrées et . La fonction de Cantor peut être généralisée de la manière suivante : avec thumb|Cette autre progression en diagonale, analogue mais différente de celle de la fonction de Cantor, fournit une autre fonction de couplage. Ici elle est utilisée pour prouver la dénombrabilité des nombres rationnels. La fonction de couplage de Cantor est définie en parcourant par diagonales successives. En suivant l'énumération diagonale par diagonale La fonction de couplage de Cantor vérifie : ce qui fournit une définition récursive de la fonction (le couple (x + y, x) décroît strictement à chaque appel récursif pour l'ordre lexicographique ). Pour tout , la diagonale d'équation contient points (de à ). Le nombre de points des diagonales qui précèdent celle du couple est donc égal à (le -ième nombre triangulaire). Par conséquent l'image du couple est donnée par : D'après la construction ci-dessus, est bijective, c'est-à-dire que pour tout , il existe un unique couple tel que . Retrouvons-le par analyse-synthèse en cherchant tel que et .

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.