Publications associées (30)

A new elementary proof of the Prime Number Theorem

Florian Karl Richter

Let Ω(n)\Omega(n) denote the number of prime factors of nn. We show that for any bounded f ⁣:NCf\colon\mathbb{N}\to\mathbb{C} one has [ \frac{1}{N}\sum_{n=1}^N, f(\Omega(n)+1)=\frac{1}{N}\sum_{n=1}^N, f(\Omega(n))+\mathrm{o}_{N\to\infty}(1). ] This yields a ...
2021

Multiple ergodic averages along functions from a Hardy field: convergence, recurrence and combinatorial applications

Florian Karl Richter

We obtain new results pertaining to convergence and recurrence of multiple ergodic averages along functions from a Hardy field. Among other things, we confirm some of the conjectures posed by Frantzikinakis in [Fra10; Fra16] and obtain combinatorial applic ...
2020

Multiplicative combinatorial properties of return time sets in minimal dynamical systems

Florian Karl Richter

We investigate the relationship between the dynamical properties of minimal topological dynamical systems and the multiplicative combinatorial properties of return time sets arising from those systems. In particular, we prove t ...
2019

A generalization of Kátai's orthogonality criterion with applications

Florian Karl Richter

We study properties of arithmetic sets coming from multiplicative number theory and obtain applications in the theory of uniform distribution and ergodic theory. Our main theorem is a generalization of Kátai's orthogonality cri ...
2019

Polar Codes for Arbitrary Classical-Quantum Channels and Arbitrary cq-MACs

We prove polarization theorems for arbitrary classical-quantum (cq) channels. The input alphabet is endowed with an arbitrary Abelian group operation, and an Anion-style transformation is applied using this operation. It is shown that as the number of pola ...
2018

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.