Concept

Detection theory

Résumé
Detection theory or signal detection theory is a means to measure the ability to differentiate between information-bearing patterns (called stimulus in living organisms, signal in machines) and random patterns that distract from the information (called noise, consisting of background stimuli and random activity of the detection machine and of the nervous system of the operator). In the field of electronics, signal recovery is the separation of such patterns from a disguising background. According to the theory, there are a number of determiners of how a detecting system will detect a signal, and where its threshold levels will be. The theory can explain how changing the threshold will affect the ability to discern, often exposing how adapted the system is to the task, purpose or goal at which it is aimed. When the detecting system is a human being, characteristics such as experience, expectations, physiological state (e.g., fatigue) and other factors can affect the threshold applied. For instance, a sentry in wartime might be likely to detect fainter stimuli than the same sentry in peacetime due to a lower criterion, however they might also be more likely to treat innocuous stimuli as a threat. Much of the early work in detection theory was done by radar researchers. By 1954, the theory was fully developed on the theoretical side as described by Peterson, Birdsall and Fox and the foundation for the psychological theory was made by Wilson P. Tanner, David M. Green, and John A. Swets, also in 1954. Detection theory was used in 1966 by John A. Swets and David M. Green for psychophysics. Green and Swets criticized the traditional methods of psychophysics for their inability to discriminate between the real sensitivity of subjects and their (potential) response biases. Detection theory has applications in many fields such as diagnostics of any kind, quality control, telecommunications, and psychology. The concept is similar to the signal-to-noise ratio used in the sciences and confusion matrices used in artificial intelligence.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.