Concept

Décomposition de Dunford

Résumé
En mathématiques, plus précisément en algèbre linéaire, la décomposition de Dunford (ou décomposition de Jordan-Chevalley) s'inscrit dans le contexte de la réduction d'endomorphisme, et prouve que tout endomorphisme u trigonalisable ( semblable à une matrice triangulaire) est la somme d'un endomorphisme diagonalisable d et d'un endomorphisme nilpotent n, les deux endomorphismes d et n commutant et étant uniques. Cette décomposition a été démontrée une première fois en 1870 par Camille Jordan, puis dans les années 1950 par Claude Chevalley dans le contexte de la théorie des groupes algébriques. Dans le monde francophone, elle est parfois attribuée à tort à Nelson Dunford, dont les travaux sont postérieurs à ceux de Chevalley. Ce n'est pas une « réduction » dans le sens où elle n'est pas maximale : il est parfois possible de pousser la décomposition en sous-espaces vectoriels stables plus petits. Elle prend comme hypothèses que l'espace vectoriel est de dimension finie et que le polynôme minimal est scindé, c'est-à-dire qu'il s'exprime comme produit de polynômes du premier degré. Cette seconde hypothèse est toujours vérifiée si le corps est algébriquement clos, comme celui des nombres complexes. Dans le cas où la propriété n'est pas vérifiée, il est possible d'étendre le corps à sa clôture algébrique, et l'espace vectoriel à ce nouveau corps et dans ce contexte d'appliquer la décomposition de Dunford. Par exemple, le corps des nombres réels se voit généralement étendu pour permettre une application de cette décomposition. Cette décomposition est largement appliquée. Elle permet un calcul matriciel souvent rapide. C'est néanmoins souvent sous la forme de la réduction de Jordan qu'elle est utilisée. Le théorème de diagonalisabilité permet de déterminer la structure de u quand il admet un polynôme annulateur scindé à racines simples. La décomposition de Dunford s'applique à un cas plus général. En dimension finie, le théorème de Cayley-Hamilton assure que où désigne le polynôme caractéristique de u.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.