Couvre les fondamentaux de l'apprentissage automatique pour les physiciens et les chimistes, en mettant l'accent sur les tâches de classification d'images à l'aide de l'intelligence artificielle.
Explore l'apprentissage à partir de données interconnectées avec des graphiques, couvrant les objectifs de recherche modernes de ML, les méthodes pionnières, les applications interdisciplinaires, et la démocratisation du graphique ML.
Explore l'IA très bénéfique, en alignant les objectifs de l'IA avec les préférences et les comportements humains, en illustrant les complexités à travers des exemples comme la classification d'image et la récupération du café.
Couvre les Perceptrons multicouches, les neurones artificiels, les fonctions d'activation, la notation matricielle, la flexibilité, la régularisation, la régression et les tâches de classification.
Explore l'importance de la gouvernance mondiale dans l'intelligence artificielle, en mettant l'accent sur les pratiques éthiques, les questions de partialité et la confiance dans les technologies de l'intelligence artificielle.
Explore la relation entre la continuité et la différenciation des fonctions, en mettant en évidence des exemples où les fonctions présentent des propriétés différentes à des points spécifiques.
Explore les défis et les points de vue de l'apprentissage profond, en mettant l'accent sur le paysage des pertes, la généralisation et l'apprentissage caractéristique.