Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
Le réseau de neurones d'Hopfield est un modèle de réseau de neurones récurrents à temps discret dont la matrice des connexions est symétrique et nulle sur la diagonale et où la dynamique est asynchrone (un seul neurone est mis à jour à chaque unité de temps). Il a été popularisé par le physicien John Hopfield en 1982. Sa découverte a permis de relancer l'intérêt dans les réseaux de neurones qui s'était essoufflé durant les années 1970 à la suite d'un article de Marvin Minsky et Seymour Papert. Les réseaux de Hopfield rentrent dans le cadre des modèles à base d'énergie. Un réseau de Hopfield est une mémoire adressable par son contenu : une forme mémorisée est retrouvée par une stabilisation du réseau, s'il a été stimulé par une partie adéquate de cette forme. Ce modèle de réseau est constitué de N neurones à états binaires (-1, 1 ou 0, 1 suivant les versions) tous interconnectés. L'entrée totale d'un neurone i est donc : où : est le poids de la connexion du neurone i au neurone j ; est l'état du neurone j. L'état du réseau peut être caractérisé par un mot de N bits correspondant à l'état de chaque neurone. Le fonctionnement du réseau est séquencé par une horloge. On notera : ou l'état du neurone i à l'instant t ; l'état du neurone i à l'instant t + dt où dt désigne l'intervalle de temps entre 2 tops d'horloge. Il existe plusieurs alternatives assez équivalentes pour la mise à jour de l'état des neurones : le mode stochastique original de Hopfield où chaque neurone modifie son état à un instant aléatoire selon une fréquence moyenne égale pour tous les neurones. Plus simplement on peut considérer qu'à chaque top d'horloge, on tire au hasard un neurone afin de le mettre à jour ; un mode synchrone où tous les neurones sont mis à jour simultanément ; un mode séquentiel où les neurones sont mis à jour selon un ordre défini. Le calcul du nouvel état du neurone i se fait ainsi : L'apprentissage dans un réseau d'Hopfield consiste à faire en sorte que chacun des prototypes à mémoriser soit : un état stable du réseau ; un état attracteur permettant de le retrouver à partir d'états légèrement différents.
, , ,
, , ,