A Hopfield network (or Amari-Hopfield network, Ising model of a neural network or Ising–Lenz–Little model) is a form of recurrent artificial neural network and a type of spin glass system popularised by John Hopfield in 1982 as described by Shun'ichi Amari in 1972
and by Little in 1974 based on Ernst Ising's work with Wilhelm Lenz on the Ising model. Hopfield networks serve as content-addressable ("associative") memory systems with binary threshold nodes, or with continuous variables. Hopfield networks also provide a model for understanding human memory.
The Ising model of a recurrent neural network as a learning memory model was first proposed by Shun'ichi Amari in 1972 and then by William A. Little in 1974, who was acknowledged by Hopfield in his 1982 paper. Networks with continuous dynamics were developed by Hopfield in his 1984 paper. A major advance in memory storage capacity was developed by Krotov and Hopfield in 2016 through a change in network dynamics and energy function. This idea was further extended by Demircigil and collaborators in 2017. The continuous dynamics of large memory capacity models was developed in a series of papers between 2016 and 2020. Large memory storage capacity Hopfield Networks are now called Dense Associative Memories or modern Hopfield networks.
The units in Hopfield nets are binary threshold units, i.e. the units only take on two different values for their states, and the value is determined by whether or not the unit's input exceeds its threshold . Discrete Hopfield nets describe relationships between binary (firing or not-firing) neurons . At a certain time, the state of the neural net is described by a vector , which records which neurons are firing in a binary word of bits.
The interactions between neurons have units that usually take on values of 1 or −1, and this convention will be used throughout this article. However, other literature might use units that take values of 0 and 1. These interactions are "learned" via Hebb's law of association, such that, for a certain state and distinct nodes
but .
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In this course we study mathematical models of neurons and neuronal networks in the context of biology and establish links to models of cognition. The focus is on brain dynamics approximated by determ
Machine learning and data analysis are becoming increasingly central in sciences including physics. In this course, fundamental principles and methods of machine learning will be introduced and practi
Since 2010 approaches in deep learning have revolutionized fields as diverse as computer vision, machine learning, or artificial intelligence. This course gives a systematic introduction into influent
This course explains the mathematical and computational models that are used in the field of theoretical neuroscience to analyze the collective dynamics of thousands of interacting neurons.
This course explains the mathematical and computational models that are used in the field of theoretical neuroscience to analyze the collective dynamics of thousands of interacting neurons.
At the same time, several different tutorials on available data and data tools, such as those from the Allen Institute for Brain Science, provide you with in-depth knowledge on brain atlases, gene exp
A recurrent neural network (RNN) is one of the two broad types of artificial neural network, characterized by direction of the flow of information between its layers. In contrast to uni-directional feedforward neural network, it is a bi-directional artificial neural network, meaning that it allows the output from some nodes to affect subsequent input to the same nodes. Their ability to use internal state (memory) to process arbitrary sequences of inputs makes them applicable to tasks such as unsegmented, connected handwriting recognition or speech recognition.
In the domain of physics and probability, a Markov random field (MRF), Markov network or undirected graphical model is a set of random variables having a Markov property described by an undirected graph. In other words, a random field is said to be a Markov random field if it satisfies Markov properties. The concept originates from the Sherrington–Kirkpatrick model. A Markov network or MRF is similar to a Bayesian network in its representation of dependencies; the differences being that Bayesian networks are directed and acyclic, whereas Markov networks are undirected and may be cyclic.
A feedforward neural network (FNN) is one of the two broad types of artificial neural network, characterized by direction of the flow of information between its layers. Its flow is uni-directional, meaning that the information in the model flows in only one direction—forward—from the input nodes, through the hidden nodes (if any) and to the output nodes, without any cycles or loops, in contrast to recurrent neural networks, which have a bi-directional flow.
The field of biometrics, and especially face recognition, has seen a wide-spread adoption the last few years, from access control on personal devices such as phones and laptops, to automated border controls such as in airports. The stakes are increasingly ...
Vehicles can encounter a myriad of obstacles on the road, and it is impossible to record them all beforehand to train a detector. Instead, we select image patches and inpaint them with the surrounding road texture, which tends to remove obstacles from thos ...
2024
, , ,
Here we provide the neural data, activation and predictions for the best models and result dataframes of our article "Task-driven neural network models predict neural dynamics of proprioception". It contains the behavioral and neural experimental data (cu ...