Well drainage means drainage of agricultural lands by wells. Agricultural land is drained by pumped wells (vertical drainage) to improve the soils by controlling water table levels and soil salinity. Subsurface (groundwater) drainage for water table and soil salinity in agricultural land can be done by horizontal and vertical drainage systems. Horizontal drainage systems are drainage systems using open ditches (trenches) or buried pipe drains. Vertical drainage systems are drainage systems using pumped wells, either open dug wells or tube wells. Both systems serve the same purposes, namely water table control and soil salinity control . Both systems can facilitate the reuse of drainage water (e.g. for irrigation), but wells offer more flexibility. Reuse is only feasible if the quality of the groundwater is acceptable and the salinity is low. Although one well may be sufficient to solve groundwater and soil salinity problems in a few hectares, one usually needs a number of wells, because the problems may be widely spread. The wells may be arranged in a triangular, square or rectangular pattern. The design of the well field concerns depth, capacity, discharge, and spacing of the wells. The discharge is found from a water balance. The depth is selected in accordance to aquifer properties. The well filter must be placed in a permeable soil layer. The spacing can be calculated with a well spacing equation using discharge, aquifer properties, well depth and optimal depth of the water table. The determination of the optimum depth of the water table is the realm of drainage research . The basic, steady state, equation for flow to fully penetrating wells (i.e. wells reaching the impermeable base) in a regularly spaced well field in a uniform unconfined (phreatic) aquifer with a hydraulic conductivity that is isotropic is: where Q = safe well discharge - i.e.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (9)
ENV-549: Irrigation and drainage engineering
The course aims at teaching the fundamentals of both irrigation and drainage techniques with particular attention to the soil water balance and related management, the materials, the construction meth
CIVIL-404: Underground construction
This course is addressed to students who want to deepen their knowledge of underground space and works, including planning, design and management, construction techniques and methods, risk assessment
CIVIL-413: Urban hydraulic systems
Sustainable freshwater and urban drainage system are considered. Fresh water: capture, reservoir and net. Drainage: hydrology, sponge city, individual conduit and manhole hydraulics. The integral r
Afficher plus
Séances de cours associées (32)
Géomécanique computationnelle : analyse des flux non confinés
Explore l'analyse des flux non confinés en géomécanique, en mettant l'accent sur les méthodes itératives de solution et les considérations relatives à l'état des limites.
Drainage dans un cylindre
Explore le drainage d'un mince film liquide dans une cavité cylindrique.
Barrages de quai et considérations géotechniques
Explore la conception et la construction de barrages en remblai, en mettant l'accent sur les considérations géotechniques, les critères de sélection du site et le comportement du barrage.
Afficher plus
Publications associées (68)

Re-evaluating the mythical divide between traditional and novel cardiovascular risk factors in rheumatoid arthritis

Mats Julius Stensrud

Cardiovascular (CV) risk factors for rheumatoid arthritis (RA) are conventionally classified as 'traditional' and 'novel'. We argue that this classification is obsolete and potentially counterproductive. Further, we discuss problems with the common practic ...
London2024

Hydro-Mechanical Characterization of a Shale by Unusually High-Pressure Oedometric Tests

Alessio Ferrari, Eleonora Crisci

The note presents selected results of an experimental campaign conducted with the aim to investigate the hydro-mechanical behaviour of a shale recovered at a depth of about 900 m below the ground. High-pressure oedometric tests were performed to investigat ...
Wei Wu, Universität für Bodenkultur2023

Dynamic Effective Porosity Explains Laboratory Experiments on Watertable Fluctuations in Coastal Unconfined Aquifers

David Andrew Barry, Zhaoyang Luo

Watertable fluctuations are a characteristic feature of coastal unconfined aquifers. They interact with the vadose zone creating a dynamic effective porosity, for which a new (empirical) expression is proposed based on a dimensionless parameter related to ...
2022
Afficher plus
Concepts associés (16)
Maîtrise de la salinité
vignette|250px|Modélisation numérique avec le logiciel SegReg : production de grains de moutarde en fonction de la salinité du sol. Le contrôle de la salinité permet de préserver le potentiel d'un sol, essentiellement en vue de son exploitation agricole. De façon préventive, il permet de limiter la dégradation par excès de sels et de restaurer des sols comportant des éléments chimiques en excès quelle qu'en soit l'origine . On parle aussi d'amélioration, de remédiation ou de récupération des sols.
Agricultural hydrology
Agricultural hydrology is the study of water balance components intervening in agricultural water management, especially in irrigation and drainage. The water balance components can be grouped into components corresponding to zones in a vertical cross-section in the soil forming reservoirs with inflow, outflow and storage of water: the surface reservoir (S) the root zone or unsaturated (vadose zone) (R) with mainly vertical flows the aquifer (Q) with mainly horizontal flows a transition zone (T) in which vertical and horizontal flows are converted The general water balance reads: inflow = outflow + change of storage and it is applicable to each of the reservoirs or a combination thereof.
Groundwater model
Groundwater models are computer models of groundwater flow systems, and are used by hydrologists and hydrogeologists. Groundwater models are used to simulate and predict aquifer conditions. An unambiguous definition of "groundwater model" is difficult to give, but there are many common characteristics. A groundwater model may be a scale model or an electric model of a groundwater situation or aquifer. Groundwater models are used to represent the natural groundwater flow in the environment.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.