Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Analyse les problèmes d'optimisation sans contrainte à l'aide de méthodes de descente de gradient et explore les taux de convergence et le comportement de l'algorithme.
Explore les réseaux neuraux pour la tomographie quantique de l'état, en se concentrant sur les systèmes hautement enchevêtrés, les programmes de formation et l'ajustement excessif.
Couvre l'algorithme BackProp, y compris l'initialisation, la propagation du signal, le calcul des erreurs, la mise à jour du poids et la comparaison de la complexité avec la différenciation numérique.
Explore l'initialisation intelligente du poids dans les réseaux neuronaux, en soulignant l'importance d'une normalisation appropriée des données et d'une initialisation aléatoire du poids.
Explore les biais implicites, la descente de gradient, la stabilité dans les algorithmes d'optimisation et les limites de généralisation dans l'apprentissage automatique.