Explore les modèles linéaires pour la classification, y compris la classification binaire, la régression logistique, les limites de décision et les machines vectorielles de support.
Explore la dualité forte, le relâchement complémentaire, l'interprétation économique et les scénarios de problèmes stochastiques dans la programmation linéaire.
Se penche sur la représentation symbolique des espaces d'état à l'aide de diagrammes de décision pour les réseaux Petri de haut niveau, présentant des techniques d'encodage efficaces et des résultats de référence.