Concept

Potentiel vecteur du champ magnétique

Le potentiel vecteur du champ magnétique, ou, plus simplement potentiel vecteur quand il n'y a pas de confusion possible, est une quantité physique assimilable à un champ de vecteurs intervenant en électromagnétisme. Elle n'est pas directement mesurable, mais sa présence est intimement liée à celle d'un champ électrique et/ou d'un champ magnétique. Son unité SI est le kg.C-1.m.s-1. Bien qu'il ait d'abord été introduit uniquement en tant qu'outil mathématique, en mécanique quantique, il a une réalité physique, comme l'a montré l'expérience Aharonov-Bohm. Le potentiel vecteur du champ magnétique est d'ordinaire introduit en conséquence des équations de Maxwell, qui stipulent que le champ magnétique B est de divergence nulle. L'analyse vectorielle indique qu'un champ vectoriel tridimensionnel de divergence nulle peut toujours s'exprimer sous la forme d'un rotationnel d'un champ de vecteurs, noté A. On a ainsi Par ailleurs, l'équation de Maxwell-Faraday relie les variations temporelles du champ magnétique aux variations spatiales du champ électrique (ce qui est à l'origine du phénomène d'induction électromagnétique) selon la formule dont on déduit que L'analyse vectorielle indique alors que le champ électrique peut s'exprimer sous la forme de la somme de l'opposé de la dérivée temporelle du potentiel vecteur et d'un terme de rotationnel nul, terme que l'on peut exprimer sous la forme d'un gradient d'une quantité appelé dans ce contexte potentiel électrique et notée V : À noter qu'au départ la relation entre A et B est une relation purement locale. Le problème de savoir si on peut définir globalement un potentiel-vecteur sur un espace donné conduit à devoir se poser des questions sur la cohomologie de cet espace, un concept issu de la géométrie différentielle. Le potentiel vecteur et le potentiel électrique sont des entités plus fondamentales que les champs électrique et magnétique, mais ne sont pas définis de façon univoque. En effet, le rotationnel d'un gradient étant nul, on peut toujours ajouter un gradient à un potentiel vecteur A pour que celui-ci génère un même champ magnétique B.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (26)
Système d'unités gaussiennes
Le système d'unités gaussiennes constitue un système métrique d'unités physiques. Ce système est le plus couramment utilisé de toute une famille de systèmes d'unités électromagnétiques basés sur des unités cgs (centimètre-gramme-seconde). Il est aussi appelé unités gaussiennes, unités gaussiennes-cgs, ou souvent simplement unités cgs. Ce dernier terme "unités cgs" est cependant ambigu, et doit donc être évité si possible : il existe plusieurs variantes d'unités cgs, avec des définitions contradictoires des quantités et unités électromagnétiques.
Gauge fixing
In the physics of gauge theories, gauge fixing (also called choosing a gauge) denotes a mathematical procedure for coping with redundant degrees of freedom in field variables. By definition, a gauge theory represents each physically distinct configuration of the system as an equivalence class of detailed local field configurations. Any two detailed configurations in the same equivalence class are related by a gauge transformation, equivalent to a shear along unphysical axes in configuration space.
Théorie de jauge
En physique théorique, une théorie de jauge est une théorie des champs basée sur un groupe de symétrie locale, appelé groupe de jauge, définissant une « invariance de jauge ». Le prototype le plus simple de théorie de jauge est l'électrodynamique classique de Maxwell. L'expression « invariance de jauge » a été introduite en 1918 par le mathématicien et physicien Hermann Weyl. La première théorie des champs à avoir une symétrie de jauge était la formulation de l'électrodynamisme de Maxwell en 1864 dans .
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.