Système d'unités gaussiennesLe système d'unités gaussiennes constitue un système métrique d'unités physiques. Ce système est le plus couramment utilisé de toute une famille de systèmes d'unités électromagnétiques basés sur des unités cgs (centimètre-gramme-seconde). Il est aussi appelé unités gaussiennes, unités gaussiennes-cgs, ou souvent simplement unités cgs. Ce dernier terme "unités cgs" est cependant ambigu, et doit donc être évité si possible : il existe plusieurs variantes d'unités cgs, avec des définitions contradictoires des quantités et unités électromagnétiques.
Gauge fixingIn the physics of gauge theories, gauge fixing (also called choosing a gauge) denotes a mathematical procedure for coping with redundant degrees of freedom in field variables. By definition, a gauge theory represents each physically distinct configuration of the system as an equivalence class of detailed local field configurations. Any two detailed configurations in the same equivalence class are related by a gauge transformation, equivalent to a shear along unphysical axes in configuration space.
Théorie de jaugeEn physique théorique, une théorie de jauge est une théorie des champs basée sur un groupe de symétrie locale, appelé groupe de jauge, définissant une « invariance de jauge ». Le prototype le plus simple de théorie de jauge est l'électrodynamique classique de Maxwell. L'expression « invariance de jauge » a été introduite en 1918 par le mathématicien et physicien Hermann Weyl. La première théorie des champs à avoir une symétrie de jauge était la formulation de l'électrodynamisme de Maxwell en 1864 dans .
Potentiel d'un champ vectorielConcept fondamental en analyse vectorielle et pour ses implications en physique, le potentiel d'un champ vectoriel est une fonction scalaire ou vectorielle qui, sous certaines conditions relatives au domaine de définition et à la régularité, permet des représentations alternatives de champs aux propriétés particulières. Ainsi, pour tout champ vectoriel qui satisfait ces conditions, le théorème de Helmholtz-Hodge assure qu'il existe un potentiel vecteur (défini à un gradient près) et un potentiel scalaire (défini à une constante près) tels que est égal à la différence entre le rotationnel de et le gradient de .
Scalar potentialIn mathematical physics, scalar potential, simply stated, describes the situation where the difference in the potential energies of an object in two different positions depends only on the positions, not upon the path taken by the object in traveling from one position to the other. It is a scalar field in three-space: a directionless value (scalar) that depends only on its location. A familiar example is potential energy due to gravity.
Quadrivecteur potentielEn physique, le quadrivecteur potentiel ou quadri-potentiel ou encore champ de jauge, noté en général avec indice muet, est un vecteur à quatre composantes défini par où désigne le potentiel scalaire (aussi noté V), c la vitesse de la lumière dans le vide, et le potentiel vecteur qui dépend du choix du système de coordonnées. Par exemple, en coordonnées cartésiennes, ce dernier est représenté par , ce qui rend au total pour le quadri-vecteur . Il est utilisé notamment en relativité restreinte et en mécanique quantique relativiste.
Théorème de Helmholtz-HodgeEn mathématiques et en physique, dans le domaine de l’analyse vectorielle, le théorème de Helmholtz-Hodge, également appelé théorème fondamental du calcul vectoriel, assure qu'un champ vectoriel se décompose en une composante « longitudinale » (irrotationnelle) et une composante « transverse » (solénoïdale), soit la somme du gradient d’un champ scalaire et du rotationnel d’un champ vectoriel. Ce résultat possède des applications importantes en électromagnétisme et en mécanique des fluides ; il est également exploité en sismologie.
Potentiel électriqueLe potentiel électrique, exprimé en volts (symbole : V), est l'une des grandeurs définissant l'état électrique d'un point de l'espace. Il correspond à l'énergie potentielle électrostatique que posséderait une charge électrique unitaire située en ce point, c'est-à-dire à l'énergie potentielle (mesurée en joules) d'une particule chargée en ce point divisée par la charge (mesurée en coulombs) de la particule.
D'alembertienLe d'alembertien, ou opérateur d'alembertien, est la généralisation du concept du laplacien dans une métrique minkowskienne. Il apparaît en particulier en électromagnétisme pour décrire la propagation des ondes électromagnétiques ainsi que dans l'équation de Klein-Gordon. Le d'alembertien est ainsi désigné à la suite de Hendrik Lorentz (-). Son éponyme est Jean Le Rond d'Alembert (-) qui l'a découvert en .
Monopôle magnétiqueUn monopôle magnétique est une particule hypothétique qui porterait une masse (ou charge) magnétique ponctuelle, au contraire des aimants habituels qui possèdent deux pôles magnétiques opposés. L'existence de monopôles magnétiques est exclue par l'électromagnétisme classique et par la théorie de la relativité, mais en 1931 Paul Dirac en a démontré l'existence théorique dans le cadre de la physique quantique. En septembre 2009, des chercheurs ont observé des quasiparticules artificielles présentant les propriétés du monopôle magnétique.