A Hamiltonian system is a dynamical system governed by Hamilton's equations. In physics, this dynamical system describes the evolution of a physical system such as a planetary system or an electron in an electromagnetic field. These systems can be studied in both Hamiltonian mechanics and dynamical systems theory.
Informally, a Hamiltonian system is a mathematical formalism developed by Hamilton to describe the evolution equations of a physical system. The advantage of this description is that it gives important insights into the dynamics, even if the initial value problem cannot be solved analytically. One example is the planetary movement of three bodies: while there is no closed-form solution to the general problem, Poincaré showed for the first time that it exhibits deterministic chaos.
Formally, a Hamiltonian system is a dynamical system characterised by the scalar function , also known as the Hamiltonian. The state of the system, , is described by the generalized coordinates and , corresponding to generalized momentum and position respectively. Both and are real-valued vectors with the same dimension N. Thus, the state is completely described by the 2N-dimensional vector
and the evolution equations are given by Hamilton's equations:
The trajectory is the solution of the initial value problem defined by Hamilton's equations and the initial condition .
If the Hamiltonian is not explicitly time-dependent, i.e. if , then the Hamiltonian does not vary with time at all:
and thus the Hamiltonian is a constant of motion, whose constant equals the total energy of the system: . Examples of such systems are the undamped pendulum, the harmonic oscillator, and dynamical billiards.
Simple harmonic motion
An example of a time-independent Hamiltonian system is the harmonic oscillator. Consider the system defined by the coordinates and . Then the Hamiltonian is given by
The Hamiltonian of this system does not depend on time and thus the energy of the system is conserved.
One important property of a Hamiltonian dynamical system is that it has a symplectic structure.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Information is processed in physical devices. In the quantum regime the concept of classical bit is replaced by the quantum bit. We introduce quantum principles, and then quantum communications, key d
Présentation des méthodes de la mécanique analytique (équations de Lagrange et de Hamilton) et introduction aux notions de modes normaux et de stabilité.
In physics and classical mechanics, the three-body problem is the problem of taking the initial positions and velocities (or momenta) of three point masses and solving for their subsequent motion according to Newton's laws of motion and Newton's law of universal gravitation. The three-body problem is a special case of the n-body problem. Unlike two-body problems, no general closed-form solution exists, as the resulting dynamical system is chaotic for most initial conditions, and numerical methods are generally required.
Le théorème KAM est un théorème de mécanique hamiltonienne qui affirme la persistance de tores invariants sur lesquels le mouvement est quasi périodique, pour les perturbations de certains systèmes hamiltoniens. Il doit son nom aux initiales de trois mathématiciens qui ont donné naissance à la théorie KAM : Kolmogorov, Arnold et Moser. Kolmogorov annonça un premier résultat en 1954, mais il ne donna que les grandes lignes de sa démonstration. Le théorème de Kolmogorov fut démontré rigoureusement en 1963 par Arnold.
Un intégrateur symplectique est une méthode numérique de résolution approchée des équations de la mécanique hamiltonienne, valable pour des faibles variations de temps. Les hypothèses de la mécanique hamiltonienne sont souvent appliquées à la mécanique céleste. Le système à étudier peut s'écrire sous la forme d'une action I et d'un angle φ, de manière que le système différentiel se réduise à : x := (I, φ) et : où l'on a noté : le crochet de Poisson de et . On voudrait connaître la solution formelle au système intégrable .
Couvre l'application de la théorie des représentations de groupe en physique quantique.
Explore les transformations canoniques, leurs propriétés et leurs applications dans la mécanique hamiltonienne, en mettant l'accent sur leur rôle dans la simplification de l'analyse des systèmes complexes.
Explore les transformations canoniques, les portraits de phase et les variables d'action dans les systèmes hamiltoniens et les oscillateurs harmoniques.
In this thesis, we propose model order reduction techniques for high-dimensional PDEs that preserve structures of the original problems and develop a closure modeling framework leveraging the Mori-Zwanzig formalism and recurrent neural networks. Since high ...
EPFL2022
, ,
. High-resolution simulations of particle-based kinetic plasma models typically require a high number of particles and thus often become computationally intractable. This is exacerbated in multi-query simulations, where the problem depends on a set of para ...
AMER MATHEMATICAL SOC2023
, ,
This work proposes an adaptive structure-preserving model order reduction method for finite-dimensional parametrized Hamiltonian systems modeling non-dissipative phenomena. To overcome the slowly decaying Kolmogorov width typical of transport problems, the ...