Concept

Inégalité torique de Loewner

In differential geometry, Loewner's torus inequality is an inequality due to Charles Loewner. It relates the systole and the area of an arbitrary Riemannian metric on the 2-torus. In 1949 Charles Loewner proved that every metric on the 2-torus satisfies the optimal inequality where "sys" is its systole, i.e. least length of a noncontractible loop. The constant appearing on the right hand side is the Hermite constant in dimension 2, so that Loewner's torus inequality can be rewritten as The inequality was first mentioned in the literature in . The boundary case of equality is attained if and only if the metric is flat and homothetic to the so-called equilateral torus, i.e. torus whose group of deck transformations is precisely the hexagonal lattice spanned by the cube roots of unity in . Given a doubly periodic metric on (e.g. an imbedding in which is invariant by a isometric action), there is a nonzero element and a point such that , where is a fundamental domain for the action, while is the Riemannian distance, namely least length of a path joining and . Loewner's torus inequality can be proved most easily by using the computational formula for the variance, Namely, the formula is applied to the probability measure defined by the measure of the unit area flat torus in the conformal class of the given torus. For the random variable X, one takes the conformal factor of the given metric with respect to the flat one. Then the expected value E(X 2) of X 2 expresses the total area of the given metric. Meanwhile, the expected value E(X) of X can be related to the systole by using Fubini's theorem. The variance of X can then be thought of as the isosystolic defect, analogous to the isoperimetric defect of Bonnesen's inequality. This approach therefore produces the following version of Loewner's torus inequality with isosystolic defect: where ƒ is the conformal factor of the metric with respect to a unit area flat metric in its conformal class. Whether or not the inequality is satisfied by all surfaces of nonpositive Euler characteristic is unknown.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.