Pu's inequalityIn differential geometry, Pu's inequality, proved by Pao Ming Pu, relates the area of an arbitrary Riemannian surface homeomorphic to the real projective plane with the lengths of the closed curves contained in it. A student of Charles Loewner, Pu proved in his 1950 thesis that every Riemannian surface homeomorphic to the real projective plane satisfies the inequality where is the systole of . The equality is attained precisely when the metric has constant Gaussian curvature.
Systole (mathématiques)Dans un espace métrique compact, la systole est la longueur minimale d'un lacet non contractile, c'est-à-dire d'une courbe fermée qu'on ne peut déformer continûment pour l'amener en un point. En géométrie des nombres, la systole d'un réseau dans un espace euclidien désigne la norme du plus petit vecteur non nul de ce réseau. Cette notion intervient en particulier dans le , également connu sous le nom de « critère de Mahler ». La systole est donc la longueur minimum d'un lacet représentant une classe non nulle d'homologie première du tore quotient du réseau.
Gromov's inequality for complex projective spaceIn Riemannian geometry, Gromov's optimal stable 2-systolic inequality is the inequality valid for an arbitrary Riemannian metric on the complex projective space, where the optimal bound is attained by the symmetric Fubini–Study metric, providing a natural geometrisation of quantum mechanics. Here is the stable 2-systole, which in this case can be defined as the infimum of the areas of rational 2-cycles representing the class of the complex projective line in 2-dimensional homology. The inequality first appeared in as Theorem 4.
Gromov's systolic inequality for essential manifoldsIn the mathematical field of Riemannian geometry, M. Gromov's systolic inequality bounds the length of the shortest non-contractible loop on a Riemannian manifold in terms of the volume of the manifold. Gromov's systolic inequality was proved in 1983; it can be viewed as a generalisation, albeit non-optimal, of Loewner's torus inequality and Pu's inequality for the real projective plane. Technically, let M be an essential Riemannian manifold of dimension n; denote by sysπ1(M) the homotopy 1-systole of M, that is, the least length of a non-contractible loop on M.
Systoles of surfacesIn mathematics, systolic inequalities for curves on surfaces were first studied by Charles Loewner in 1949 (unpublished; see remark at end of P. M. Pu's paper in '52). Given a closed surface, its systole, denoted sys, is defined to be the least length of a loop that cannot be contracted to a point on the surface. The systolic area of a metric is defined to be the ratio area/sys2. The systolic ratio SR is the reciprocal quantity sys2/area. See also Introduction to systolic geometry.
Géométrie différentielle des surfacesEn mathématiques, la géométrie différentielle des surfaces est la branche de la géométrie différentielle qui traite des surfaces (les objets géométriques de l'espace usuel E3, ou leur généralisation que sont les variétés de dimension 2), munies éventuellement de structures supplémentaires, le plus souvent une métrique riemannienne. Outre les surfaces classiques de la géométrie euclidienne (sphères, cônes, cylindres, etc.
Systole (mathématiques)Dans un espace métrique compact, la systole est la longueur minimale d'un lacet non contractile, c'est-à-dire d'une courbe fermée qu'on ne peut déformer continûment pour l'amener en un point. En géométrie des nombres, la systole d'un réseau dans un espace euclidien désigne la norme du plus petit vecteur non nul de ce réseau. Cette notion intervient en particulier dans le , également connu sous le nom de « critère de Mahler ». La systole est donc la longueur minimum d'un lacet représentant une classe non nulle d'homologie première du tore quotient du réseau.