En mathématiques, la géométrie différentielle des surfaces est la branche de la géométrie différentielle qui traite des surfaces (les objets géométriques de l'espace usuel E3, ou leur généralisation que sont les variétés de dimension 2), munies éventuellement de structures supplémentaires, le plus souvent une métrique riemannienne.
Outre les surfaces classiques de la géométrie euclidienne (sphères, cônes, cylindres, etc.), des surfaces apparaissent naturellement en tant que graphes de fonctions de deux variables, ou sous forme paramétrique, comme ensembles décrits par une famille de courbes de l'espace. Les surfaces ont été étudiées à partir de divers points de vue : de façon extrinsèque, en s'intéressant à leur plongement dans l'espace euclidien, et de façon intrinsèque, en ne se préoccupant que des propriétés qui peuvent être déterminées à partir des distances mesurées le long de courbes tracées sur la surface. Un des concepts fondamentaux découverts ainsi est la courbure de Gauss, étudiée en profondeur par Carl Friedrich Gauss (entre 1825 et 1827), qui montra son caractère intrinsèque.
Dans l'esprit du programme d'Erlangen, les groupes de Lie, plus précisément les groupes de symétrie du plan euclidien, de la sphère et du plan hyperbolique, ont joué un rôle important dans l'étude des surfaces. Ces groupes permettent de décrire les surfaces de courbure constante ; ils forment aussi un outil essentiel dans l'approche moderne de la géométrie différentielle intrinsèque à l'aide de connexions. Les propriétés extrinsèques dépendant du plongement d'une surface dans l'espace euclidien ont été également largement étudiées. Les relations entre ces deux approches sont bien illustrées par le cas des équations d'Euler-Lagrange du calcul des variations : bien qu'Euler ait utilisé les équations à une variable pour déterminer les géodésiques, que l'on peut définir de manière intrinsèque, l'une des applications principales que fit Lagrange des équations à deux variables fut l'étude des surfaces minimales, un concept extrinsèque qui n'a de sens que pour les plongements.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
En mathématiques, et plus particulièrement en géométrie différentielle, les coordonnées isothermales d'une variété riemannienne sont des coordonnées locales où le tenseur métrique est conforme à la métrique euclidienne. Cela signifie qu'en coordonnées isothermales, la métrique riemannienne a localement la forme : où est une fonction de classe . Les coordonnées isothermales sur les surfaces ont d'abord été introduites par Gauss. Korn et Lichtenstein ont par la suite prouvé que les coordonnées isothermales existent autour de tout point d'une variété riemannienne de dimension 2.
En géométrie différentielle, le repère de Darboux est un repère utile pour l'étude des courbes tracées sur une surface de l'espace euclidien orienté à trois dimensions. Il permet la définition des courbures normale et géodésique, et de la torsion géodésique. Il ne faut pas confondre ce repère avec la notion de base de Darboux en géométrie symplectique. On suppose que Σ est une nappe paramétrée de l'espace euclidien orienté E à trois dimensions, de paramétrage donnée par la fonction M(u, v) de classe (k>1) d'un domaine de R2 dans E.
En géométrie différentielle, le théorème de Hilbert, publié par David Hilbert en 1901, affirme qu'on ne peut pas représenter le plan hyperbolique dans l'espace usuel, ou plus rigoureusement qu'il n'existe pas de surfaces régulières de courbure constante négative immergées isométriquement dans . David Hilbert publia son théorème sous le titre Über Flächen von konstanter Krümmung (Sur les surfaces de courbure constante) dans les Transactions of the American Mathematical Society (1901, vol. 2, p. 87-99).
The subject deals with differential geometry and its relation to global analysis, partial differential equations, geometric measure theory and variational principles to name a few.
Learn to optimize on smooth, nonlinear spaces: Join us to build your foundations (starting at "what is a manifold?") and confidently implement your first algorithm (Riemannian gradient descent).
Explore les fondamentaux électrostatiques, la loi de Gauss, le potentiel électrique et les applications de distribution de charge à travers des exemples.
In this thesis, we concentrate on advancing high-level behavioral control policies for robotic systems within the framework of Dynamical Systems (DS). Throughout the course of this research, a unifying thread weaving through diverse fields emerges, and tha ...
We develop new tools to study landscapes in nonconvex optimization. Given one optimization problem, we pair it with another by smoothly parametrizing the domain. This is either for practical purposes (e.g., to use smooth optimization algorithms with good g ...
Modern optimization is tasked with handling applications of increasingly large scale, chiefly due to the massive amounts of widely available data and the ever-growing reach of Machine Learning. Consequently, this area of research is under steady pressure t ...