Formule de BrahmaguptaEn géométrie euclidienne, la formule de Brahmagupta, portant le nom du mathématicien indien du Brahmagupta, est une généralisation de la formule de Héron à l'aire d'un quadrilatère convexe inscriptible (c'est-à-dire dont les sommets se situent sur un même cercle), uniquement en fonction des longueurs de ses côtés : où est le demi-périmètre du quadrilatère, a, b, c et d sont les longueurs de ses côtés et S son aire . Elle représente un cas particulier de la formule de Bretschneider donnant l'aire d'un quadrilatère non forcément inscriptible, concave ou convexe mais non croisé.
Formule de Bretschneidervignette|256x256px| En géométrie, la formule de Bretschneider permet de calculer l'aire d'un quadrilatère non croisé : où, , sont les longueurs des côtés du quadrilatère, le demi-périmètre, et et deux angles opposés quelconques . Remarquons que puisque . Cette formule fonctionne pour un quadrilatère convexe ou concave (mais non croisé), non forcément inscriptible. Elle contient la formule de Brahmagupta de l'aire d'un quadrilatère inscriptible (cas ), ainsi que la formule de Héron de l'aire d'un triangle (cas ).
Mesure de HausdorffIn mathematics, Hausdorff measure is a generalization of the traditional notions of area and volume to non-integer dimensions, specifically fractals and their Hausdorff dimensions. It is a type of outer measure, named for Felix Hausdorff, that assigns a number in [0,∞] to each set in or, more generally, in any metric space. The zero-dimensional Hausdorff measure is the number of points in the set (if the set is finite) or ∞ if the set is infinite.
Secteur circulaireUn secteur circulaire est la partie d'un disque délimitée par deux rayons et un arc de cercle, où la plus petite aire est connue sous le nom de secteur mineur, la plus grande étant le secteur majeur. Son domaine peut être calculé comme décrit ci-dessous. Soient θ l'angle en radians et r le rayon. La superficie totale d'un disque est π r.
Carré unitévignette|300x300px|Le carré de l'unité dans le plan. En mathématiques, un carré unité est un carré dont les côtés ont une longueur de . Souvent, le carré unité se réfère spécifiquement au carré dans le plan cartésien, avec les coordonnées correspondantes aux sommets ), , , et . Dans un système de coordonnées cartésiennes le carré unité est défini comme le carré constitué des points où x et y sont situés dans l'intervalle fermée de à . Autrement dit, le carré unité est le produit cartésien , où I indique l'intervalle d'unité fermé.
Triangle de HéronIn geometry, a Heronian triangle (or Heron triangle) is a triangle whose side lengths a, b, and c and area A are all positive integers. Heronian triangles are named after Heron of Alexandria, based on their relation to Heron's formula which Heron demonstrated with the example triangle of sides 13, 14, 15 and area 84. Heron's formula implies that the Heronian triangles are exactly the positive integer solutions of the Diophantine equation that is, the side lengths and area of any Heronian triangle satisfy the equation, and any positive integer solution of the equation describes a Heronian triangle.
Papyrus Rhindvignette|Un extrait du papyrus Rhind. vignette|Détail d'une des deux principales parties du papyrus Rhind, British Museum, EA 10057. Le papyrus Rhind est un célèbre papyrus de la Deuxième Période intermédiaire qui a été écrit par le scribe Ahmès. Son nom vient de l'Écossais Alexander Henry Rhind qui l'acheta en 1858 à Louxor, mais il aurait été découvert par des pilleurs sur le site de la ville voisine de Thèbes. Depuis 1865, il est conservé au British Museum (à Londres).
Segment circulaireEn géométrie, un segment circulaire est une partie d'un disque intuitivement définie comme un domaine qui est « coupé » du reste du disque par une corde (droite sécante). Le segment circulaire constitue donc la partie entre la droite sécante et un arc. Soient (voir figure) : le rayon du cercle ; l'angle en radians du secteur circulaire ; la longueur de l'arc ; la longueur de la corde ; la hauteur du segment ; la hauteur de la portion triangulaire.
PlanimètreLe planimètre est un outil qui permet la mesure mécanique directe des surfaces sur les plans, cartes géographiques, etc., en suivant le contour par l'extrémité d'un bras articulé. Le planimètre a inspiré l'invention de la souris (informatique) : Douglas Engelbart a construit le premier prototype de souris à partir de la technologie du planimètre. Inventé en 1854 par le Suisse Jakob Amsler-Laffon (1823-1912), il est simple, précis et bon marché (brevet français 24338 pour 15 ans du ).