Concept

Jeu du mille-pattes

Résumé
En théorie des jeux, le jeu du mille-pattes, introduit par Robert W. Rosenthal en 1981, est un jeu sous forme extensive dans lequel deux joueurs choisissent à chaque tour de prendre une somme légèrement plus importante dans un pot croissant lentement, ou bien de donner le pot à l'autre joueur. Les gains sont déterminés de sorte que si le donne le pot à son adversaire, et si l'adversaire prend le pot au tour suivant, le recevra légèrement moins que s'il avait pris le pot dès ce tour. Tandis que la version traditionnelle du jeu du mille pattes avait (le nom du « mille-pattes » est centipede en anglais), chaque jeu avec cette structure mais un nombre différent de tours est encore appelé « jeu du mille-pattes ». Ce qui est particulièrement intéressant, c'est que l'unique équilibre parfait en sous-jeux (et chaque équilibre de Nash) de ce jeu indique que le premier joueur prend le pot dès le premier tour du jeu; cependant, expérimentalement, relativement peu de joueurs jouent ainsi, et obtiennent un meilleur résultat que celui qui est prédit par l'analyse de la théorie des équilibres. Ces résultats servent à montrer que les équilibres parfaits en sous-jeux et les équilibres de Nash échouent dans la prédiction du comportement humain dans certaines circonstances. Le jeu du mille-pattes est souvent utilisé en introduction des cours de théorie des jeux pour mettre en lumière le concept d'induction à rebours et d'élimination itérée des stratégies dominées, qui permettent de donner une solution au jeu. Une version possible de ce jeu est la suivante : Considérons deux joueurs : Alice et Bob. Alice commence. Au début, Alice a deux piles de pièces en face d'elle : l'une en contient quatre et l'autre une seule. Chaque joueur a deux mouvements possibles : soit « prendre » la plus grosse pile de pièces et donner la plus petite à l'autre joueur, soit « pousser » les deux piles vers l'autre joueur. Chaque fois que les piles de pièces traversent la table, la quantité de pièces dans chaque pile double.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.