Concept

Zhegalkin polynomial

Zhegalkin (also Žegalkin, Gégalkine or Shegalkin) polynomials (полиномы Жегалкина), also known as algebraic normal form, are a representation of functions in Boolean algebra. Introduced by the Russian mathematician Ivan Ivanovich Zhegalkin in 1927, they are the polynomial ring over the integers modulo 2. The resulting degeneracies of modular arithmetic result in Zhegalkin polynomials being simpler than ordinary polynomials, requiring neither coefficients nor exponents. Coefficients are redundant because 1 is the only nonzero coefficient. Exponents are redundant because in arithmetic mod 2, x2 = x. Hence a polynomial such as 3x2y5z is congruent to, and can therefore be rewritten as, xyz. TOC Prior to 1927, Boolean algebra had been considered a calculus of logical values with logical operations of conjunction, disjunction, negation, and so on. Zhegalkin showed that all Boolean operations could be written as ordinary numeric polynomials, representing the false and true values as 0 and 1, the integers mod 2. Logical conjunction is written as xy, and logical exclusive-or as arithmetic addition mod 2, (written here as x⊕y to avoid confusion with the common use of + as a synonym for inclusive-or ∨). The logical complement ¬x is then x⊕1. Since ∧ and ¬ form a basis for Boolean algebra, all other logical operations are compositions of these basic operations, and so the polynomials of ordinary algebra can represent all Boolean operations, allowing Boolean reasoning to be performed using elementary algebra. For example, the Boolean 2-out-of-3 threshold or median operation is written as the Zhegalkin polynomial xy⊕yz⊕zx. Formally a Zhegalkin monomial is the product of a finite set of distinct variables (hence square-free), including the empty set whose product is denoted 1. There are 2n possible Zhegalkin monomials in n variables, since each monomial is fully specified by the presence or absence of each variable. A Zhegalkin polynomial is the sum (exclusive-or) of a set of Zhegalkin monomials, with the empty set denoted by 0.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (3)
EE-110: Logic systems (for MT)
Ce cours couvre les fondements des systèmes numériques. Sur la base d'algèbre Booléenne et de circuitscombinatoires et séquentiels incluant les machines d'états finis, les methodes d'analyse et de syn
CS-101: Advanced information, computation, communication I
Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a
CS-550: Formal verification
We introduce formal verification as an approach for developing highly reliable systems. Formal verification finds proofs that computer systems work under all relevant scenarios. We will learn how to u
Séances de cours associées (17)
Systèmes logiques : Karnaugh Maps et TTL Gates
Explore les cartes Karnaugh, les portes TTL, les aspects analogiques de la logique numérique et les principaux impliqués.
Synthèse logique : Concevoir des circuits numériques efficaces
Discute des techniques de synthèse logique pour concevoir des circuits numériques efficaces en utilisant des minterms, des maxterms et de nouvelles portes comme XOR et XNOR.
Algèbre booléenne : propriétés et optimisation
Couvre les propriétés de l'algèbre booléenne, les techniques d'optimisation et l'importance des groupes valides dans les cartes de Karnaugh.
Afficher plus
Publications associées (11)

Scalable Logic Rewriting Using Don’t Cares

Giovanni De Micheli, Alessandro Tempia Calvino

Logic rewriting is a powerful optimization technique that replaces small sections of a Boolean network with better implementations. Typically, exact synthesis is used to compute optimum replacement on-the-fly, with possible support for Boolean don't cares. ...
2024

Symmetry in design and decoding of polar-like codes

Kirill Ivanov

The beginning of 21st century provided us with many answers about how to reach the channel capacity. Polarization and spatial coupling are two techniques for achieving the capacity of binary memoryless symmetric channels under low-complexity decoding algor ...
EPFL2022

Data Structures and Algorithms for Logic Synthesis in Advanced Technologies

Eleonora Testa

Logic synthesis is a key component of digital design and modern EDA tools; it is thus an essential instrument for the design of leading-edge chips and to push the limits of their performance. In the last decades, the electronic circuits community has evolv ...
EPFL2020
Afficher plus
Concepts associés (7)
Forme normale algébrique
En logique mathématique, la forme normale algébrique d'une fonction booléenne est une formule qui est un ou exclusif de conjonctions de variables propositionnelles ; par exemple 1 ⊕ a ⊕ b ⊕ ab ⊕ abc (1 correspond à la conjonction vide). Toute fonction booléenne admet une unique forme normale algébrique de taille minimale. Pour construire une formule normale algébrique, on part d'une forme normale disjonctive. On remplace ensuite la négation de a par (1 ⊕ a). On applique ensuite les règles de distributivité et d'absorption (a ⊕ a) = 0.
Algèbre de Boole (logique)
Lalgèbre de Boole, ou calcul booléen, est la partie des mathématiques qui s'intéresse à une approche algébrique de la logique, vue en termes de variables, d'opérateurs et de fonctions sur les variables logiques, ce qui permet d'utiliser des techniques algébriques pour traiter les expressions à deux valeurs du calcul des propositions. Elle fut lancée en 1854 par le mathématicien britannique George Boole. L'algèbre de Boole trouve de nombreuses applications en informatique et dans la conception des circuits électroniques.
Canonical normal form
In Boolean algebra, any Boolean function can be expressed in the canonical disjunctive normal form (CDNF) or minterm canonical form, and its dual, the canonical conjunctive normal form (CCNF) or maxterm canonical form. Other canonical forms include the complete sum of prime implicants or Blake canonical form (and its dual), and the algebraic normal form (also called Zhegalkin or Reed–Muller). Minterms are called products because they are the logical AND of a set of variables, and maxterms are called sums because they are the logical OR of a set of variables.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.