Forme normale algébriqueEn logique mathématique, la forme normale algébrique d'une fonction booléenne est une formule qui est un ou exclusif de conjonctions de variables propositionnelles ; par exemple 1 ⊕ a ⊕ b ⊕ ab ⊕ abc (1 correspond à la conjonction vide). Toute fonction booléenne admet une unique forme normale algébrique de taille minimale. Pour construire une formule normale algébrique, on part d'une forme normale disjonctive. On remplace ensuite la négation de a par (1 ⊕ a). On applique ensuite les règles de distributivité et d'absorption (a ⊕ a) = 0.
Algèbre de Boole (logique)Lalgèbre de Boole, ou calcul booléen, est la partie des mathématiques qui s'intéresse à une approche algébrique de la logique, vue en termes de variables, d'opérateurs et de fonctions sur les variables logiques, ce qui permet d'utiliser des techniques algébriques pour traiter les expressions à deux valeurs du calcul des propositions. Elle fut lancée en 1854 par le mathématicien britannique George Boole. L'algèbre de Boole trouve de nombreuses applications en informatique et dans la conception des circuits électroniques.
Canonical normal formIn Boolean algebra, any Boolean function can be expressed in the canonical disjunctive normal form (CDNF) or minterm canonical form, and its dual, the canonical conjunctive normal form (CCNF) or maxterm canonical form. Other canonical forms include the complete sum of prime implicants or Blake canonical form (and its dual), and the algebraic normal form (also called Zhegalkin or Reed–Muller). Minterms are called products because they are the logical AND of a set of variables, and maxterms are called sums because they are the logical OR of a set of variables.
Diagramme de décision binaireEn informatique, un graphe de décision binaire ou diagramme de décision binaire (ou BDD pour Binary Decision Diagram en anglais) est une structure de données utilisée pour représenter des fonctions booléennes, ou des questionnaires binaires. On utilise les BDD pour représenter des ensembles ou des relations de manière compacte / compressée. Les diagrammes de décision binaires sont utilisés par les programmes de conception assistée par ordinateur (CAO / CAD) pour générer des circuits (synthèse logique), et dans la vérification formelle.
Forme normale disjonctiveEn logique booléenne ou en calcul des propositions, une forme normale disjonctive ou FND (en anglais, disjunctive normal form ou DNF) est une normalisation d'une expression logique qui est une disjonction de clauses conjonctives. Elle est utilisée dans la démonstration automatique de théorèmes. Une expression logique est en FND si et seulement si elle est une disjonction d'une ou plusieurs conjonctions d'un ou plusieurs littéraux. Tout comme dans une forme normale conjonctive (FNC), les seuls opérateurs dans une FND sont le et logique, le ou logique et la négation.
Table de KarnaughUne table de Karnaugh (prononcé ) est une méthode graphique et simple pour trouver ou simplifier une fonction logique à partir de sa table de vérité. Elle utilise le code de Gray (aussi appelé binaire réfléchi), qui a comme propriété principale de ne faire varier qu'un seul bit entre deux mots successifs (la distance de Hamming de deux mots successifs du code de Gray est égale à 1). Cette méthode a été développée par Maurice Karnaugh en 1953, en perfectionnant un diagramme similaire introduit en 1952 par .
Fonction booléennevignette|Arbre de décision binaire Une fonction booléenne est une fonction prenant en entrée une liste de bits et donnant en sortie un unique bit. Les fonctions booléennes sont très utilisées en informatique théorique, notamment en théorie de la complexité et en cryptologie (par exemple dans les boîtes-S et les chiffrements par flot -- fonction de filtrage ou de combinaison de registres à décalage à rétroaction linéaire). Une fonction booléenne est une fonction de dans où désigne le corps fini à 2 éléments.