DISPLAYTITLE:Uniform k 21 polytope
In geometry, a uniform k21 polytope is a polytope in k + 4 dimensions constructed from the En Coxeter group, and having only regular polytope facets. The family was named by their Coxeter symbol k21 by its bifurcating Coxeter–Dynkin diagram, with a single ring on the end of the k-node sequence.
Thorold Gosset discovered this family as a part of his 1900 enumeration of the regular and semiregular polytopes, and so they are sometimes called Gosset's semiregular figures. Gosset named them by their dimension from 5 to 9, for example the 5-ic semiregular figure.
The sequence as identified by Gosset ends as an infinite tessellation (space-filling honeycomb) in 8-space, called the E8 lattice. (A final form was not discovered by Gosset and is called the E9 lattice: 621. It is a tessellation of hyperbolic 9-space constructed of ∞ 9-simplex and ∞ 9-orthoplex facets with all vertices at infinity.)
The family starts uniquely as 6-polytopes. The triangular prism and rectified 5-cell are included at the beginning for completeness. The demipenteract also exists in the demihypercube family.
They are also sometimes named by their symmetry group, like E6 polytope, although there are many uniform polytopes within the E6 symmetry.
The complete family of Gosset semiregular polytopes are:
triangular prism: −121 (2 triangles and 3 square faces)
rectified 5-cell: 021, Tetroctahedric (5 tetrahedra and 5 octahedra cells)
demipenteract: 121, 5-ic semiregular figure (16 5-cell and 10 16-cell facets)
2 21 polytope: 221, 6-ic semiregular figure (72 5-simplex and 27 5-orthoplex facets)
3 21 polytope: 321, 7-ic semiregular figure (576 6-simplex and 126 6-orthoplex facets)
4 21 polytope: 421, 8-ic semiregular figure (17280 7-simplex and 2160 7-orthoplex facets)
5 21 honeycomb: 521, 9-ic semiregular check tessellates Euclidean 8-space (∞ 8-simplex and ∞ 8-orthoplex facets)
6 21 honeycomb: 621, tessellates hyperbolic 9-space (∞ 9-simplex and ∞ 9-orthoplex facets)
Each polytope is constructed from (n − 1)-simplex and (n − 1)-orthoplex facets.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
In geometry, the Gosset–Elte figures, named by Coxeter after Thorold Gosset and E. L. Elte, are a group of uniform polytopes which are not regular, generated by a Wythoff construction with mirrors all related by order-2 and order-3 dihedral angles. They can be seen as one-end-ringed Coxeter–Dynkin diagrams. The Coxeter symbol for these figures has the form ki,j, where each letter represents a length of order-3 branches on a Coxeter–Dynkin diagram with a single ring on the end node of a k length sequence of branches.
In geometry, by Thorold Gosset's definition a semiregular polytope is usually taken to be a polytope that is vertex-transitive and has all its facets being regular polytopes. E.L. Elte compiled a longer list in 1912 as The Semiregular Polytopes of the Hyperspaces which included a wider definition. In three-dimensional space and below, the terms semiregular polytope and uniform polytope have identical meanings, because all uniform polygons must be regular.
DISPLAYTITLE:2 21 polytope In 6-dimensional geometry, the 221 polytope is a uniform 6-polytope, constructed within the symmetry of the E6 group. It was discovered by Thorold Gosset, published in his 1900 paper. He called it an 6-ic semi-regular figure. It is also called the Schläfli polytope. Its Coxeter symbol is 221, describing its bifurcating Coxeter-Dynkin diagram, with a single ring on the end of one of the 2-node sequences. He also studied its connection with the 27 lines on the cubic surface, which are naturally in correspondence with the vertices of 221.
Theoretical calculations are performed to study transformations in silica as a function of nonhydrostatic stress. Molecular-dynamics calculations reveal a crystalline-to-crystalline transition from alpha-quartz to a phase with five-coordinated silicon (Si- ...