Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Couvre la classification des images, le clustering et les techniques d'apprentissage automatique telles que la réduction de la dimensionnalité et l'apprentissage par renforcement.
Explore l'impact de l'apprentissage profond sur les humanités numériques, en se concentrant sur les systèmes de connaissances non conceptuels et les progrès récents de l'IA.
Explore la sensibilité des données de localisation, l'inférence des points d'intérêt et les techniques de protection de la confidentialité des localisations.
Explore la génération de données synthétiques pour la publication de données préservant la vie privée, en évaluant son efficacité contre les menaces à la vie privée dans des ensembles de données brutes.
Couvre les bases de l'apprentissage automatique, y compris l'apprentissage supervisé et non supervisé, la régression, la classification et le regroupement.
Explore la surparamétrie, la généralisation, le surajustement, le sous-ajustement et la régularisation implicite dans les modèles d'apprentissage profond.