In mathematics, the cohomology operation concept became central to algebraic topology, particularly homotopy theory, from the 1950s onwards, in the shape of the simple definition that if F is a functor defining a cohomology theory, then a cohomology operation should be a natural transformation from F to itself. Throughout there have been two basic points: the operations can be studied by combinatorial means; and the effect of the operations is to yield an interesting bicommutant theory. The origin of these studies was the work of Pontryagin, Postnikov, and Norman Steenrod, who first defined the Pontryagin square, Postnikov square, and Steenrod square operations for singular cohomology, in the case of mod 2 coefficients. The combinatorial aspect there arises as a formulation of the failure of a natural diagonal map, at cochain level. The general theory of the Steenrod algebra of operations has been brought into close relation with that of the symmetric group. In the Adams spectral sequence the bicommutant aspect is implicit in the use of Ext functors, the derived functors of Hom-functors; if there is a bicommutant aspect, taken over the Steenrod algebra acting, it is only at a derived level. The convergence is to groups in stable homotopy theory, about which information is hard to come by. This connection established the deep interest of the cohomology operations for homotopy theory, and has been a research topic ever since. An extraordinary cohomology theory has its own cohomology operations, and these may exhibit a richer set on constraints. A cohomology operation of type is a natural transformation of functors defined on CW complexes. Cohomology of CW complexes is representable by an Eilenberg–MacLane space, so by the Yoneda lemma a cohomology operation of type is given by a homotopy class of maps . Using representability once again, the cohomology operation is given by an element of .

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.