Développement asymptotiqueEn mathématiques, un développement asymptotique d'une fonction f donnée dans un voisinage fixé est une somme finie de fonctions de référence qui donne une bonne approximation du comportement de la fonction f dans le voisinage considéré. Le concept de développement asymptotique a été introduit par Poincaré à propos de l'étude du problème à N corps de la mécanique céleste par la théorie des perturbations. La somme étant finie, la question de la convergence ne se pose pas.
Asymptotic analysisIn mathematical analysis, asymptotic analysis, also known as asymptotics, is a method of describing limiting behavior. As an illustration, suppose that we are interested in the properties of a function f (n) as n becomes very large. If f(n) = n2 + 3n, then as n becomes very large, the term 3n becomes insignificant compared to n2. The function f(n) is said to be "asymptotically equivalent to n2, as n → ∞". This is often written symbolically as f (n) ~ n2, which is read as "f(n) is asymptotic to n2".
Fonction bêtathumb|Variations de la fonction bêta pour les valeurs positives de x et y En mathématiques, la fonction bêta est une des deux intégrales d'Euler, définie pour tous nombres complexes x et y de parties réelles strictement positives par : et éventuellement prolongée analytiquement à tout le plan complexe à l'exception des entiers négatifs. La fonction bêta a été étudiée par Euler et Legendre et doit son nom à Jacques Binet. Elle est en relation avec la fonction gamma.
Produit infiniEn mathématiques, étant donné une suite de nombres complexes , on définit le produit infini de la suite comme la limite, si elle existe, des produits partiels quand N tend vers l'infini ; De même qu'une série utilise la lettre Σ, un produit infini utilise la lettre grecque Π (pi majuscule) : Dans le cas où tous les termes de la suite sont non nuls, on dit que le produit infini, noté , converge quand la suite des produits partiels converge vers une limite non nulle ; sinon, on dit que le produit infini diverg
Transformation de MellinEn mathématiques, la transformation de Mellin est une transformation intégrale qui peut être considérée comme la version de la transformation de Laplace bilatérale. Cette transformation intégrale est fortement reliée à la théorie des séries de Dirichlet, et est souvent utilisée en théorie des nombres et dans la théorie des développements asymptotiques ; elle est également fortement reliée à la transformation de Laplace, à la transformation de Fourier, à la théorie de la fonction gamma et aux fonctions spéciales.
Fonction zêta de Hurwitzvignette|Fonction zêta de Hurwitz En mathématiques, la fonction zêta de Hurwitz est une des nombreuses fonctions zêta. Elle est définie, pour toute valeur q du paramètre, nombre complexe de partie réelle strictement positive, par la série suivante, convergeant vers une fonction holomorphe sur le demi-plan des complexes s tels que Re(s) > 1 : Par prolongement analytique, s'étend en une fonction méromorphe sur le plan complexe, d'unique pôle s = 1. est la fonction zêta de Riemann. où Γ désigne la fonction Gamma.
Reflection formulaIn mathematics, a reflection formula or reflection relation for a function f is a relationship between f(a − x) and f(x). It is a special case of a functional equation, and it is very common in the literature to use the term "functional equation" when "reflection formula" is meant. Reflection formulas are useful for numerical computation of special functions. In effect, an approximation that has greater accuracy or only converges on one side of a reflection point (typically in the positive half of the complex plane) can be employed for all arguments.
Intégrale de GaussEn mathématiques, une intégrale de Gauss est l'intégrale d'une fonction gaussienne sur l'ensemble des réels. Sa valeur est reliée à la constante π par la formule où α est un paramètre réel strictement positif. Elle intervient dans la définition de la loi de probabilité appelée loi gaussienne, ou loi normale. Cette formule peut être obtenue grâce à une intégrale double et un changement de variable polaire. Sa première démonstration connue est donnée par Pierre-Simon de Laplace.
Multiplication theoremIn mathematics, the multiplication theorem is a certain type of identity obeyed by many special functions related to the gamma function. For the explicit case of the gamma function, the identity is a product of values; thus the name. The various relations all stem from the same underlying principle; that is, the relation for one special function can be derived from that for the others, and is simply a manifestation of the same identity in different guises. The multiplication theorem takes two common forms.
Équation fonctionnelleEn mathématiques, une équation fonctionnelle est une équation dont les inconnues sont des fonctions. De nombreuses propriétés de fonctions peuvent être déterminées en étudiant les équations auxquelles elles satisfont. D'habitude, le terme « équation fonctionnelle » est réservé aux équations qu'on ne peut pas ramener à des équations plus simples, par exemple à des équations différentielles.