Publication

The cotangent complex and Thom spectra

Nima Rasekh
2021
Article
Résumé

The cotangent complex of a map of commutative rings is a central object in deformation theory. Since the 1990s, it has been generalized to the homotopical setting of E-infinity-ring spectra in various ways. In this work we first establish, in the context of infinity-categories and using Goodwillie's calculus of functors, that various definitions of the cotangent complex of a map of E-infinity-ring spectra that exist in the literature are equivalent. We then turn our attention to a specific example. Let R be an E-infinity-ring spectrum and Pic(R) denote its Picard E8-group. Let M f denote the Thom E-infinity- R-algebra of a map of E-infinity-groups f : G. Pic(R); examples of M f are given by various flavors of cobordism spectra. We prove that the cotangent complex of R -> M f is equivalent to the smash product of M f and the connective spectrum associated to G.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.