Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
The cotangent complex of a map of commutative rings is a central object in deformation theory. Since the 1990s, it has been generalized to the homotopical setting of E-infinity-ring spectra in various ways. In this work we first establish, in the context of infinity-categories and using Goodwillie's calculus of functors, that various definitions of the cotangent complex of a map of E-infinity-ring spectra that exist in the literature are equivalent. We then turn our attention to a specific example. Let R be an E-infinity-ring spectrum and Pic(R) denote its Picard E8-group. Let M f denote the Thom E-infinity- R-algebra of a map of E-infinity-groups f : G. Pic(R); examples of M f are given by various flavors of cobordism spectra. We prove that the cotangent complex of R -> M f is equivalent to the smash product of M f and the connective spectrum associated to G.
,
,