In mathematics, a moment problem arises as the result of trying to invert the mapping that takes a measure μ to the sequence of moments More generally, one may consider for an arbitrary sequence of functions Mn. In the classical setting, μ is a measure on the real line, and M is the sequence { xn : n = 0, 1, 2, ... }. In this form the question appears in probability theory, asking whether there is a probability measure having specified mean, variance and so on, and whether it is unique. There are three named classical moment problems: the Hamburger moment problem in which the support of μ is allowed to be the whole real line; the Stieltjes moment problem, for [0, +∞); and the Hausdorff moment problem for a bounded interval, which without loss of generality may be taken as [0, 1]. A sequence of numbers mn is the sequence of moments of a measure μ if and only if a certain positivity condition is fulfilled; namely, the Hankel matrices Hn, should be positive semi-definite. This is because a positive-semidefinite Hankel matrix corresponds to a linear functional such that and (non-negative for sum of squares of polynomials). Assume can be extended to . In the univariate case, a non-negative polynomial can always be written as a sum of squares. So the linear functional is positive for all the non-negative polynomials in the univariate case. By Haviland's theorem, the linear functional has a measure form, that is . A condition of similar form is necessary and sufficient for the existence of a measure supported on a given interval [a, b]. One way to prove these results is to consider the linear functional that sends a polynomial to If mkn are the moments of some measure μ supported on [a, b], then evidently Vice versa, if () holds, one can apply the M. Riesz extension theorem and extend to a functional on the space of continuous functions with compact support C0([a, b]), so that By the Riesz representation theorem, () holds iff there exists a measure μ supported on [a, b], such that for every ƒ ∈ C0([a, b]).

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (2)
MATH-432: Probability theory
The course is based on Durrett's text book Probability: Theory and Examples.
It takes the measure theory approach to probability theory, wherein expectations are simply abstract integrals.
MATH-487: Topics in stochastic analysis
This course offers an introduction to topics in stochastic analysis, oriented about theory of multi-scale stochastic dynamics. We shall learn the fundamental ideas, relevant techniques, and in general
Séances de cours associées (14)
Moments et le théorème de Carleman
Explore les moments dans les variables aléatoires et le théorème de Carleman pour déterminer de manière unique une variable aléatoire par ses moments.
Théorème de la limite centrale
Couvre le théorème de la limite centrale et son application aux variables aléatoires, prouvant la convergence vers une distribution normale.
Forces distribuées : calculs et analyses
Explore l'analyse des forces distribuées, y compris les calculs, les remplacements, les réactions et les conditions de bord.
Afficher plus
Publications associées (12)

Positive moments for scattering amplitudes

Riccardo Rattazzi, Francesco Riva, Brando Bellazzini, Marc Riembau Saperas

We find the complete set of conditions satisfied by the forward 2 -> 2 scattering amplitude in unitary and causal theories. These are based on an infinite set of energy dependent quantities (the arcs) which are dispersively expressed as moments of a positi ...
AMER PHYSICAL SOC2021

Optimal lower bounds on hitting probabilities for stochastic heat equations in spatial dimension k >= 1

Robert Dalang, Fei Pu

We establish a sharp estimate on the negative moments of the smallest eigenvalue of the Malliavin matrix gamma z of Z := (u(s, y), u(t , x) - u(s, y)), where u is the solution to a system of d non-linear stochastic heat equations in spatial dimension k >= ...
UNIV WASHINGTON, DEPT MATHEMATICS2020

La poétique des petits gestes (Patras, GR)

Depuis que le train du Péloponnèse fonctionne à nouveau, il est possible d’atteindre le centre-ville de Patras en seulement quinze minutes depuis sa périphérie. Cette nouvelle voie me fait découvrir des quartiers entiers et arpenter la ville d’une manière ...
2019
Afficher plus
Concepts associés (4)
Hamburger moment problem
In mathematics, the Hamburger moment problem, named after Hans Ludwig Hamburger, is formulated as follows: given a sequence (m0, m1, m2, ...), does there exist a positive Borel measure μ (for instance, the measure determined by the cumulative distribution function of a random variable) on the real line such that In other words, an affirmative answer to the problem means that (m0, m1, m2, ...) is the sequence of moments of some positive Borel measure μ.
Moments de Hausdorff
En mathématiques, le problème des moments de Hausdorff est celui des conditions nécessaires et suffisantes pour qu'une suite (m) de réels soit la suite des moments d'une mesure de Borel sur le segment [0, 1]. Le nom du problème est associé au mathématicien allemand Felix Hausdorff. Dans le cas m0 = 1, ceci équivaut à l'existence d'une variable aléatoire réelle X dans l'intervalle [0, 1] telle que pour tout n, l'espérance de X soit égale à mn.
Stieltjes moment problem
In mathematics, the Stieltjes moment problem, named after Thomas Joannes Stieltjes, seeks necessary and sufficient conditions for a sequence (m0, m1, m2, ...) to be of the form for some measure μ. If such a function μ exists, one asks whether it is unique. The essential difference between this and other well-known moment problems is that this is on a half-line [0, ∞), whereas in the Hausdorff moment problem one considers a bounded interval [0, 1], and in the Hamburger moment problem one considers the whole line (−∞, ∞).
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.