Concept

Moments de Hausdorff

En mathématiques, le problème des moments de Hausdorff est celui des conditions nécessaires et suffisantes pour qu'une suite (m) de réels soit la suite des moments d'une mesure de Borel sur le segment [0, 1]. Le nom du problème est associé au mathématicien allemand Felix Hausdorff. Dans le cas m0 = 1, ceci équivaut à l'existence d'une variable aléatoire réelle X dans l'intervalle [0, 1] telle que pour tout n, l'espérance de X soit égale à mn. Ce problème est voisin du problème des moments de Stieljes défini sur l'intervalle , celui de Toeplitz sur et celui de Hamburger sur mais à la différence de ceux-ci, la solution, si elle existe, est unique. Il a été étendu aux espaces bidimensionnels et aux suites tronquées. Hausdorff a montré qu'il existe une solution si et seulement si la suite (m) est complètement monotone, c'est-à-dire si ses suites de différences satisfont pour tout n, k ≥ 0, où Δ est l'opérateur différence finie donné par Une telle condition est nécessaire, en effet Par exemple L'unicité de se déduit du théorème d'approximation de Weierstrass : Les problèmes d'approximation en physique conduisent à l'usage de suites tronquées .

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.