Program trading is a type of trading in securities, usually consisting of baskets of fifteen stocks or more that are executed by a computer program simultaneously based on predetermined conditions. Program trading is often used by hedge funds and other institutional investors pursuing index arbitrage or other arbitrage strategies. There are essentially two reasons to use program trading, either because of the desire to trade many stocks simultaneously (for example, when a mutual fund receives an influx of money it will use that money to increase its holdings in the multiple stocks which the fund is based on), or alternatively to arbitrage temporary price discrepancies between related financial instruments, such as between an index and its constituent parts.
According to the New York Stock Exchange, in 2006 program trading accounts for about 30% and as high as 46.4% of the trading volume on that exchange every day. Barrons breaks down its weekly figures for program trading between index arbitrage and other types of program trading. As of July 2012, program trading made up about 25% of the volume on the NYSE; index arbitrage made up less than 1%.
Several factors help to explain the explosion in program trading. Technological advances spawned the growth of electronic communication networks. These electronic exchanges, like Instinet and Archipelago Exchange, allow thousands of buy and sell orders to be matched very rapidly, without human intervention.
In addition, the proliferation of hedge funds with all their sophisticated trading strategies have helped drive program-trading volume.
As technology advanced and access to electronic exchanges became easier and faster, program trading developed into the much broader algorithmic trading and high-frequency trading strategies employed by the investment banks and hedge funds.
Program Trading is a strategy normally used by large institutional traders. Barrons shows a detailed breakdown of the NYSE-published program trading figures each week, giving the figures for the largest program trading firms (such as investment banks).
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Explore les applications financières des blockchains, en se concentrant sur les avantages de YouHodler pour les utilisateurs non avertis de la technologie et les défis dans le domaine de la cryptographie.
Un dark pool est un système privé d'échange de valeurs mobilières exploité par un prestataire de services d'investissement ou un opérateur de marché, qui s'effectue donc de gré à gré, à l'inverse des échanges en bourse. Deux traits importants les distinguent des marchés boursiers : les prix des transactions ne sont pas affichés avant la transaction finale, ce qui permet l'anonymat des acteurs (acheteurs ou vendeurs). L'intérêt de ce système est d'éviter les trop grands impacts de marché lors d'échanges massifs.
Les transactions à haute fréquence, ou trading haute fréquence (THF ou en, de l'anglais high-frequency trading ou encore nano trading), sont l'exécution à grande vitesse de transactions financières faites par des algorithmes informatiques. C'est une des catégories du « trading automatique » (basé sur la décision statistique), qui gère de plus en plus les données boursières à la manière d'un big data devenu inaccessible aux analyses humaine et bancaire traditionnelles.
In the chapter ``When to Introduce Electronic Trading Platforms in Over-the-Counter Markets?'' An equilibrium in a market is determined in which traders have the choice between using an electronic platform with a request-for-quote protocol or calling a dea ...
EPFL2020
This thesis develops equilibrium models, and studies the effects of market frictions on risk-sharing, derivatives pricing, and trading patterns.In the chapter titled "Imbalance-Based Option Pricing", I develop an equilibrium model of fragmented options m ...
EPFL2018
This thesis examines predictability and seasonality in the cross-section of stock returns. The first chapter, titled ``Infrequent Rebalancing, Return Autocorrelation, and Seasonality,'' shows that a model of infrequent rebalancing can explain specific pred ...