Complexité en tempsEn algorithmique, la complexité en temps est une mesure du temps utilisé par un algorithme, exprimé comme fonction de la taille de l'entrée. Le temps compte le nombre d'étapes de calcul avant d'arriver à un résultat. Habituellement, le temps correspondant à des entrées de taille n est le temps le plus long parmi les temps d’exécution des entrées de cette taille ; on parle de complexité dans le pire cas. Les études de complexité portent dans la majorité des cas sur le comportement asymptotique, lorsque la taille des entrées tend vers l'infini, et l'on utilise couramment les notations grand O de Landau.
Problème de la somme de sous-ensemblesLe problème de la somme de sous-ensembles (en anglais : subset sum problem) est un problème de décision important en complexité algorithmique et en cryptologie. Le problème peut être décrit de la manière suivante : étant donné un ensemble de entiers, existe-t-il un sous-ensemble de dont la somme des éléments est nulle ? Par exemple, pour l'ensemble {-8, -3, -2, 4, 5}, la réponse est oui car la somme des éléments du sous-ensemble {-3, -2, 5} est nulle, par contre pour {-6, -1, 2, 3, 8} la réponse est non.
Apprentissage automatiqueL'apprentissage automatique (en anglais : machine learning, « apprentissage machine »), apprentissage artificiel ou apprentissage statistique est un champ d'étude de l'intelligence artificielle qui se fonde sur des approches mathématiques et statistiques pour donner aux ordinateurs la capacité d'« apprendre » à partir de données, c'est-à-dire d'améliorer leurs performances à résoudre des tâches sans être explicitement programmés pour chacune. Plus largement, il concerne la conception, l'analyse, l'optimisation, le développement et l'implémentation de telles méthodes.
Algorithme d'approximationEn informatique théorique, un algorithme d'approximation est une méthode permettant de calculer une solution approchée à un problème algorithmique d'optimisation. Plus précisément, c'est une heuristique garantissant à la qualité de la solution qui fournit un rapport inférieur (si l'on minimise) à une constante, par rapport à la qualité optimale d'une solution, pour toutes les instances possibles du problème.
MémoïsationEn informatique, la mémoïsation (ou mémoïzation) est la mise en cache des valeurs de retour d'une fonction selon ses valeurs d'entrée. Le but de cette technique d'optimisation de code est de diminuer le temps d'exécution d'un programme informatique en mémorisant les valeurs retournées par une fonction. Bien que liée à la notion de cache, la mémoïsation désigne une technique bien distincte de celles mises en œuvre dans les algorithmes de gestion de la mémoire cache. Le terme anglais « memoization » a été introduit par Donald Michie en 1968.
Optimisation (mathématiques)L'optimisation est une branche des mathématiques cherchant à modéliser, à analyser et à résoudre analytiquement ou numériquement les problèmes qui consistent à minimiser ou maximiser une fonction sur un ensemble. L’optimisation joue un rôle important en recherche opérationnelle (domaine à la frontière entre l'informatique, les mathématiques et l'économie), dans les mathématiques appliquées (fondamentales pour l'industrie et l'ingénierie), en analyse et en analyse numérique, en statistique pour l’estimation du maximum de vraisemblance d’une distribution, pour la recherche de stratégies dans le cadre de la théorie des jeux, ou encore en théorie du contrôle et de la commande.
Problème du sac à dosEn algorithmique, le problème du sac à dos, parfois noté (KP) (de l'anglais Knapsack Problem) est un problème d'optimisation combinatoire. Ce problème classique en informatique et en mathématiques modélise une situation analogue au remplissage d'un sac à dos. Il consiste à trouver la combinaison d'éléments la plus précieuse à inclure dans un sac à dos, étant donné un ensemble d'éléments décrits par leurs poids et valeurs.
Analyse EarleyEn théorie des langages, l'algorithme d'Earley est un algorithme d'analyse syntaxique pour les grammaires non contextuelles décrit pour la première fois par Jay Earley. À l'instar des algorithmes CYK et GLR, l'algorithme d'Earley calcule toutes les analyses possibles d'une phrase (et pas seulement une de ces analyses). Il repose sur de la programmation dynamique. On peut construire un analyseur Earley pour toute grammaire non contextuelle. Il s'exécute en temps cubique (O (n3), où n est la longueur de la chaîne d'entrée).
Algorithme de Cocke-Younger-KasamiEn informatique théorique et en théorie des langages, l'algorithme de Cocke-Younger-Kasami (CYK) est un algorithme d'analyse syntaxique pour les grammaires non contextuelles, publié par Itiroo Sakai en 1961. Il permet de déterminer si un mot est engendré par une grammaire, et si oui, d'en donner un arbre syntaxique. L'algorithme est nommé d'après les trois personnes qui l'ont redécouvert indépendamment, J. Cocke, dont l'article n'a jamais été publié, D. H. Younger et T. Kasami qui a publié un rapport interne aux US-AirForce.
Modèle de Markov cachéUn modèle de Markov caché (MMC, terme et définition normalisés par l’ISO/CÉI [ISO/IEC 2382-29:1999]) — (HMM)—, ou plus correctement (mais non employé) automate de Markov à états cachés, est un modèle statistique dans lequel le système modélisé est supposé être un processus markovien de paramètres inconnus. Contrairement à une chaîne de Markov classique, où les transitions prises sont inconnues de l'utilisateur mais où les états d'une exécution sont connus, dans un modèle de Markov caché, les états d'une exécution sont inconnus de l'utilisateur (seuls certains paramètres, comme la température, etc.