In mathematics and statistics, sums of powers occur in a number of contexts: Sums of squares arise in many contexts. For example, in geometry, the Pythagorean theorem involves the sum of two squares; in number theory, there are Legendre's three-square theorem and Jacobi's four-square theorem; and in statistics, the analysis of variance involves summing the squares of quantities. Faulhaber's formula expresses as a polynomial in n, or alternatively in terms of a Bernoulli polynomial. Fermat's right triangle theorem states that there is no solution in positive integers for and . Fermat's Last Theorem states that is impossible in positive integers with k>2. The equation of a superellipse is . The squircle is the case . Euler's sum of powers conjecture (disproved) concerns situations in which the sum of n integers, each a kth power of an integer, equals another kth power. The Fermat-Catalan conjecture asks whether there are an infinitude of examples in which the sum of two coprime integers, each a power of an integer, with the powers not necessarily equal, can equal another integer that is a power, with the reciprocals of the three powers summing to less than 1. Beal's conjecture concerns the question of whether the sum of two coprime integers, each a power greater than 2 of an integer, with the powers not necessarily equal, can equal another integer that is a power greater than 2. The Jacobi–Madden equation is in integers. The Prouhet–Tarry–Escott problem considers sums of two sets of kth powers of integers that are equal for multiple values of k. A taxicab number is the smallest integer that can be expressed as a sum of two positive third powers in n distinct ways. The Riemann zeta function is the sum of the reciprocals of the positive integers each raised to the power s, where s is a complex number whose real part is greater than 1. The Lander, Parkin, and Selfridge conjecture concerns the minimal value of m + n in Waring's problem asks whether for every natural number k there exists an associated positive integer s such that every natural number is the sum of at most s kth powers of natural numbers.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.