Traditionnellement, la théorie des nombres est une branche des mathématiques qui s'occupe des propriétés des nombres entiers (qu'ils soient entiers naturels ou entiers relatifs). Plus généralement, le champ d'étude de cette théorie concerne une large classe de problèmes qui proviennent naturellement de l'étude des entiers. La théorie des nombres occupe une place particulière en mathématiques, à la fois par ses connexions avec de nombreux autres domaines, et par la fascination qu'exercent ses théorèmes et ses problèmes ouverts, dont les énoncés sont souvent faciles à comprendre, même pour les non-mathématiciens. C'est ce qu'exprime la citation suivante, de Jürgen Neukirch :
Le terme « arithmétique » est aussi utilisé pour faire référence à la théorie des nombres. C'est un terme assez ancien, qui n'est plus aussi populaire que par le passé ; pour éviter des confusions, on désignait aussi parfois, jusqu'au début du vingtième siècle, la théorie des nombres par le terme « arithmétique supérieure ». Néanmoins, l'adjectif arithmétique reste assez répandu, en particulier pour désigner des champs mathématiques (géométrie algébrique arithmétique, arithmétique des courbes et surfaces elliptiques, etc.), où la restriction des questions et des solutions aux entiers, ou à certaines de leurs extensions, joue un rôle déterminant. Ce sens du terme arithmétique ne doit pas être confondu avec celui utilisé en logique pour l'étude des systèmes formels axiomatisant les entiers, comme dans l'arithmétique de Peano.
La théorie des nombres est divisée en plusieurs champs d'étude en fonction des méthodes utilisées et des questions traitées.
Le terme élémentaire désigne généralement une méthode qui n'use pas d'analyse complexe. Par exemple, le théorème des nombres premiers a été prouvé en utilisant une analyse complexe en 1896, mais la preuve élémentaire n'a été trouvée qu'en 1949 par Erdős et Selberg. Le terme est quelque peu ambigu : par exemple, les preuves basées sur des théorèmes taubériens complexes (par exemple le théorème de Wiener-Ikehara) sont souvent considérées comme très éclairantes mais non élémentaires.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Le contenu de ce cours correspond à celui du cours d'Analyse I, comme il est enseigné pour les étudiantes et les étudiants de l'EPFL pendant leur premier semestre. Chaque chapitre du cours correspond
Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a
This course introduces the basics of cryptography. We review several types of cryptographic primitives, when it is safe to use them and how to select the appropriate security parameters. We detail how
En théorie des nombres, un nombre friable, ou lisse, est un entier naturel dont l'ensemble des facteurs premiers sont petits, relativement à une borne donnée. Les entiers friables sont particulièrement importants dans la cryptographie basée sur la factorisation, qui constitue depuis une vingtaine d'années une branche dynamique de la théorie des nombres, avec des applications dans des domaines aussi variés que l'algorithmique (problème du logarithme discret), la théorie de la sommabilité (sommation friable des séries de Fourier), la théorie élémentaire des nombres premiers (preuve élémentaire du théorème des nombres premiers de Daboussi en 1984), la méthode du cercle (problème de Waring), le modèle de Billingsley, le modèle de , l', les théorèmes de type Erdős-Wintner, etc.
En théorie des nombres, les fonctions définies sur l'ensemble des entiers naturels non nuls et qui respectent les produits sont appelées fonctions complètement multiplicatives ou fonctions totalement multiplicatives. Elles font partie des fonctions multiplicatives, qui ne respectent que les produits de nombres premiers entre eux. En dehors de la théorie des nombres, le terme « fonction multiplicative » est souvent considéré comme synonyme de « fonction complètement multiplicative » tel que défini dans cet article.
vignette|Une juxtaposition de carrés dont les côtés ont pour longueur des nombres successifs de la suite de Fibonacci : 1, 1, 2, 3, 5, 8, 13 et 21. En mathématiques, la suite de Fibonacci est une suite d'entiers dans laquelle chaque terme est la somme des deux termes qui le précèdent. Notée , elle est définie par , et pour . Les termes de cette suite sont appelés nombres de Fibonacci et forment la : vignette|Représentation géométrique de la fraction continue de φ faisant apparaître les nombres de la suite de Fibonacci.
L'algèbre générale, ou algèbre abstraite, est la branche des mathématiques qui porte principalement sur l'étude des structures algébriques et de leurs relations. L'appellation algèbre générale s'oppose à celle d'algèbre élémentaire ; cette dernière enseigne le calcul algébrique, c'est-à-dire les règles de manipulation des formules et des expressions algébriques. Historiquement, les structures algébriques sont apparues dans différents domaines des mathématiques, et n'y ont pas été étudiées séparément.
L'analyse complexe est un domaine des mathématiques traitant des fonctions à valeurs complexes (ou, plus généralement, à valeurs dans un C-espace vectoriel) et qui sont dérivables par rapport à une ou plusieurs variables complexes. Les fonctions dérivables sur un ouvert du plan complexe sont appelées holomorphes et satisfont de nombreuses propriétés plus fortes que celles vérifiées par les fonctions dérivables en analyse réelle. Entre autres, toute fonction holomorphe est analytique et vérifie le principe du maximum.
droite|vignette|La fonction zêta de Riemann ζ(s) dans le plan complexe. La couleur d'un point s code la valeur de ζ(s) : les couleurs proches du noir indiquent des valeurs proches de zéro, alors que la teinte code l'argument de la valeur. En mathématiques, la théorie analytique des nombres est une branche de la théorie des nombres qui utilise des méthodes d'analyse mathématique pour résoudre des problèmes concernant les nombres entiers.
Recently, we have applied the generalized Littlewood theorem concerning contour integrals of the logarithm of the analytical function to find the sums over inverse powers of zeros for the incomplete gamma and Riemann zeta functions, polygamma functions, an ...
MDPI2024
We prove the non-planarity of a family of 3-regular graphs constructed from the solutions to the Markoff equation x2 + y2 + z2 = xyz modulo prime numbers greater than 7. The proof uses Euler characteristic and an enumeration of the short cycles in these gr ...
Berlin2024
We initiate the study of certain families of L-functions attached to characters of subgroups of higher-rank tori, and of their average at the central point. In particular, we evaluate the average of the values L( 2 1 , chi a )L( 21 , chi b ) for arbitrary ...