Bring's curveIn mathematics, Bring's curve (also called Bring's surface and, by analogy with the Klein quartic, the Bring sextic) is the curve in cut out by the homogeneous equations It was named by after Erland Samuel Bring who studied a similar construction in 1786 in a Promotionschrift submitted to the University of Lund. Note that the roots xi of the Bring quintic satisfies Bring's curve since for The automorphism group of the curve is the symmetric group S5 of order 120, given by permutations of the 5 coordinates.
Hurwitz's automorphisms theoremIn mathematics, Hurwitz's automorphisms theorem bounds the order of the group of automorphisms, via orientation-preserving conformal mappings, of a compact Riemann surface of genus g > 1, stating that the number of such automorphisms cannot exceed 84(g − 1). A group for which the maximum is achieved is called a Hurwitz group, and the corresponding Riemann surface a Hurwitz surface. Because compact Riemann surfaces are synonymous with non-singular complex projective algebraic curves, a Hurwitz surface can also be called a Hurwitz curve.
Fuchsian groupIn mathematics, a Fuchsian group is a discrete subgroup of PSL(2,R). The group PSL(2,R) can be regarded equivalently as a group of orientation-preserving isometries of the hyperbolic plane, or conformal transformations of the unit disc, or conformal transformations of the upper half plane, so a Fuchsian group can be regarded as a group acting on any of these spaces.
Quartique de Kleinthumb|La quartique de Klein est le quotient d'un pavage uniforme triangulaire d'ordre 7. En géométrie hyperbolique, la quartique de Klein, du nom du mathématicien allemand Felix Klein, est une surface de Riemann compacte de genre 3. Elle a le groupe d'automorphismes d'ordre le plus élevé possible parmi les surfaces de Riemann de genre 3, à savoir le groupe simple d'ordre 168. La quartique de Klein est en conséquence la de genre le plus bas possible. Surface de Bolza Surface de Macbeath Théorème de Stark-Hee
Systole (mathématiques)Dans un espace métrique compact, la systole est la longueur minimale d'un lacet non contractile, c'est-à-dire d'une courbe fermée qu'on ne peut déformer continûment pour l'amener en un point. En géométrie des nombres, la systole d'un réseau dans un espace euclidien désigne la norme du plus petit vecteur non nul de ce réseau. Cette notion intervient en particulier dans le , également connu sous le nom de « critère de Mahler ». La systole est donc la longueur minimum d'un lacet représentant une classe non nulle d'homologie première du tore quotient du réseau.
Triangle groupIn mathematics, a triangle group is a group that can be realized geometrically by sequences of reflections across the sides of a triangle. The triangle can be an ordinary Euclidean triangle, a triangle on the sphere, or a hyperbolic triangle. Each triangle group is the symmetry group of a tiling of the Euclidean plane, the sphere, or the hyperbolic plane by congruent triangles called Möbius triangles, each one a fundamental domain for the action. Let l, m, n be integers greater than or equal to 2.
Surface de RiemannEn géométrie différentielle et géométrie analytique complexe, une surface de Riemann est une variété complexe de dimension 1. Cette notion a été introduite par Bernhard Riemann pour prendre en compte les singularités et les complications topologiques qui accompagnent certains prolongements analytiques de fonctions holomorphes. Par oubli de structure, une surface de Riemann se présente comme une variété différentielle réelle de dimension 2, d'où le nom surface. Elles ont été nommées en hommage au mathématicien allemand Bernhard Riemann.