Résumé
In mathematics, a Fuchsian group is a discrete subgroup of PSL(2,R). The group PSL(2,R) can be regarded equivalently as a group of orientation-preserving isometries of the hyperbolic plane, or conformal transformations of the unit disc, or conformal transformations of the upper half plane, so a Fuchsian group can be regarded as a group acting on any of these spaces. There are some variations of the definition: sometimes the Fuchsian group is assumed to be finitely generated, sometimes it is allowed to be a subgroup of PGL(2,R) (so that it contains orientation-reversing elements), and sometimes it is allowed to be a Kleinian group (a discrete subgroup of PSL(2,C)) which is conjugate to a subgroup of PSL(2,R). Fuchsian groups are used to create Fuchsian models of Riemann surfaces. In this case, the group may be called the Fuchsian group of the surface. In some sense, Fuchsian groups do for non-Euclidean geometry what crystallographic groups do for Euclidean geometry. Some Escher graphics are based on them (for the disc model of hyperbolic geometry). General Fuchsian groups were first studied by , who was motivated by the paper , and therefore named them after Lazarus Fuchs. Let H = {z in C : Im(z) > 0} be the upper half-plane. Then H is a model of the hyperbolic plane when endowed with the metric The group PSL(2,R) acts on H by linear fractional transformations (also known as Möbius transformations): This action is faithful, and in fact PSL(2,R) is isomorphic to the group of all orientation-preserving isometries of H. A Fuchsian group Γ may be defined to be a subgroup of PSL(2,R), which acts discontinuously on H. That is, For every z in H, the orbit Γz = {γz : γ in Γ} has no accumulation point in H. An equivalent definition for Γ to be Fuchsian is that Γ be a discrete group, which means that: Every sequence {γn} of elements of Γ converging to the identity in the usual topology of point-wise convergence is eventually constant, i.e. there exists an integer N such that for all n > N, γn = I, where I is the identity matrix.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (1)
MATH-410: Riemann surfaces
This course is an introduction to the theory of Riemann surfaces. Riemann surfaces naturally appear is mathematics in many different ways: as a result of analytic continuation, as quotients of complex
Séances de cours associées (9)
Open Mapping Théorème
Explique le théorème de cartographie ouverte pour les cartes holomorphes entre les surfaces de Riemann.
Transformations formelles : Théorie et applications
Explore la théorie et les applications des transformations conformales, couvrant les transformations conformales spéciales et les transformations isomorphiques.
Monster Group : Représentation
Explore le groupe Monster, un groupe simple sporadique avec une théorie de représentation unique.
Afficher plus
Publications associées (8)

Invariant integrals on topological groups

Vasco Schiavo

We generalize the fixed-point property for discrete groups acting on convex cones given by Monod in [23] to topological groups. At first, we focus on describing this fixed-point property from a functional point of view, and then we look at the class of gro ...
ACADEMIC PRESS INC ELSEVIER SCIENCE2022
Afficher plus
Concepts associés (18)
Demi-plan de Poincaré
Le demi-plan de Poincaré est un sous-ensemble des nombres complexes. Il a permis au mathématicien français Henri Poincaré d'éclairer les travaux du Russe Nikolaï Lobatchevski. Le demi-plan de Poincaré est formé par les nombres complexes de partie imaginaire strictement positive. Il fournit un exemple de géométrie non euclidienne, plus précisément de géométrie hyperbolique. On considère le demi-plan supérieur : On munit le demi-plan supérieur de la métrique : Cette métrique possède une courbure scalaire constante négative : On se ramène usuellement au cas d'une courbure unité, c’est-à-dire qu'on choisit : a = 1 pour simplifier les équations.
Groupe discret
In mathematics, a topological group G is called a discrete group if there is no limit point in it (i.e., for each element in G, there is a neighborhood which only contains that element). Equivalently, the group G is discrete if and only if its identity is isolated. A subgroup H of a topological group G is a discrete subgroup if H is discrete when endowed with the subspace topology from G. In other words there is a neighbourhood of the identity in G containing no other element of H.
Courbe modulaire
En théorie des nombres et en géométrie algébrique une courbe modulaire désigne la surface de Riemann, ou la courbe algébrique correspondante, construite comme quotient du demi-plan de Poincaré H sous l'action de certains sous-groupes Γ d'indice fini dans le groupe modulaire. La courbe obtenue est généralement notée Y(Γ). On appelle Γ le niveau de la courbe Y(Γ). Depuis Gorō Shimura, on sait que ces courbes admettent des équations à coefficients dans un corps cyclotomique, qui dépend du niveau Γ.
Afficher plus