En physique, les gluons sont les bosons de jauge responsables de l'interaction forte. Les gluons confinent les quarks ensemble en les liant très fortement. Ils permettent ainsi l'existence des protons et des neutrons, ainsi que des autres hadrons, et donc de l'univers que nous connaissons. Le substantif masculin « gluon » (prononcé en français standard) est un emprunt à l'anglais en, substantif dérivé de en (« colle ») avec le suffixe en (« -on »). En physique des particules, l'anglais en est attesté dès : sa première occurrence connue se trouve dans un article du physicien théoricien américain Murray Gell-Mann (-). La charge électrique des gluons est nulle, la valeur de leur spin est 1 et chaque gluon porte une charge de couleur (rouge, vert ou bleu, comme les quarks), ainsi qu'une anti-charge de couleur (comme les anti-quarks). Il y a 8 différentes sortes de gluons, en fonction de leur charge et de leur anti-charge de couleur. Dans la théorie de la chromodynamique quantique (en anglais : quantum chromodynamics, ou QCD) utilisée aujourd'hui pour décrire l'interaction forte, les gluons sont échangés lorsque des particules possédant une charge de couleur interagissent. Lorsque deux quarks échangent un gluon, leur charge de couleur change ; le gluon se chargeant d'une anti-couleur compensant la perte du quark, de même que la nouvelle charge de couleur du quark. Étant donné que les gluons portent eux-mêmes une charge (et une anti-charge) de couleur, ils peuvent aussi interagir avec d'autres gluons, ce qui rend l'analyse mathématique de l'interaction forte très compliquée. Dans la théorie des champs quantiques, la valeur théorique de la masse d’un gluon est nulle. Cependant une masse aussi grande que quelques meV/ n’est pas à écarter. A priori il pourrait y avoir neuf types de gluons, un pour chaque combinaison de charge et d'anti-charge de couleur (rouge, vert, bleu, et anti-rouge, anti-vert, anti-bleu), ce qui donnerait les gluons suivants : En fait, du point de vue mathématique, il existe un nombre illimité de types de gluons, chacun pouvant être en fait représenté par une combinaison linéaire des neuf états fondamentaux (aussi appelés états propres) listés ci-dessus.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (4)
PHYS-311: Particles and fundamental interactions
Introduction générale sur l'état des connaissances en physique des particules élémentaires: de la cinématique relativiste à l'interprétation phénoménologique des collisions à haute énergie.
PHYS-415: Particle physics I
Presentation of particle properties, their symmetries and interactions. Introduction to quantum electrodynamics and to the Feynman rules.
PHYS-400: Selected topics in nuclear and particle physics
This course presents the physical principles and the recent research developments on three topics of particle and nuclear physics: the physics of neutrinos, dark matter, and plasmas of quarks and gluo
Afficher plus
Séances de cours associées (29)
Introduction à la physique des particules
Introduit des échelles spatiales, des interactions particules, l'équivalence masse-énergie et la conservation de l'élan dans la physique des particules.
Chromodynamique Quantique: Concepts Principaux
Couvre les principaux concepts de la chromodynamique quantique, y compris le confinement des couleurs, les gluons, les singulets de couleur et la découverte du gluon.
Sujets choisis en physique nucléaire et des particules
Couvre des sujets sélectionnés en physique nucléaire et des particules, y compris l'identification QGP, les sources isotropes, la distribution de la rapidité et les chaînes QCD.
Afficher plus
Publications associées (94)

Measurement of the K+ → π+γγ decay

Alessandro Mapelli, Radoslav Marchevski, Alina Kleimenova

A sample of 3984 candidates of the K+ -> pi(+)gamma gamma decay, with an estimated background of 291 +/- 14 events, was collected by the NA62 experiment at CERN during 2017-2018. In order to describe the observed di-photon mass spectrum, the next-to-leadin ...
Elsevier2024
Afficher plus
Concepts associés (25)
Physique des particules
La physique des particules ou la physique subatomique est la branche de la physique qui étudie les constituants élémentaires de la matière et les rayonnements, ainsi que leurs interactions. On l'appelle aussi parfois physique des hautes énergies car de nombreuses particules élémentaires, instables, n'existent pas à l'état naturel et peuvent seulement être détectées lors de collisions à hautes énergies entre particules stables dans les accélérateurs de particules.
Quark
En physique des particules, un quark est une particule élémentaire et un constituant de la matière observable. Les quarks s'associent entre eux pour former des hadrons, particules composites, dont les protons et les neutrons sont des exemples connus, parmi d'autres. En raison d'une propriété dite de confinement, les quarks ne peuvent être isolés, et n'ont pas pu être observés directement ; tout ce que l'on sait des quarks provient donc indirectement de l'observation des hadrons.
Modèle standard de la physique des particules
vignette|upright=2.0|Modèle standard des particules élémentaires avec les trois générations de fermions (trois premières colonnes), les bosons de jauge (quatrième colonne) et le boson de Higgs (cinquième colonne). Le modèle standard de la physique des particules est une théorie qui concerne l'électromagnétisme, les interactions nucléaires faible et forte, et la classification de toutes les particules subatomiques connues. Elle a été développée pendant la deuxième moitié du , dans une initiative collaborative mondiale, sur les bases de la mécanique quantique.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.