Résumé
In the design of experiments, optimal designs (or optimum designs) are a class of experimental designs that are optimal with respect to some statistical criterion. The creation of this field of statistics has been credited to Danish statistician Kirstine Smith. In the design of experiments for estimating statistical models, optimal designs allow parameters to be estimated without bias and with minimum variance. A non-optimal design requires a greater number of experimental runs to estimate the parameters with the same precision as an optimal design. In practical terms, optimal experiments can reduce the costs of experimentation. The optimality of a design depends on the statistical model and is assessed with respect to a statistical criterion, which is related to the variance-matrix of the estimator. Specifying an appropriate model and specifying a suitable criterion function both require understanding of statistical theory and practical knowledge with designing experiments. Optimal designs offer three advantages over sub-optimal experimental designs: Optimal designs reduce the costs of experimentation by allowing statistical models to be estimated with fewer experimental runs. Optimal designs can accommodate multiple types of factors, such as process, mixture, and discrete factors. Designs can be optimized when the design-space is constrained, for example, when the mathematical process-space contains factor-settings that are practically infeasible (e.g. due to safety concerns). Experimental designs are evaluated using statistical criteria. It is known that the least squares estimator minimizes the variance of mean-unbiased estimators (under the conditions of the Gauss–Markov theorem). In the estimation theory for statistical models with one real parameter, the reciprocal of the variance of an ("efficient") estimator is called the "Fisher information" for that estimator. Because of this reciprocity, minimizing the variance corresponds to maximizing the information.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Publications associées

Chargement

Personnes associées

Chargement

Unités associées

Chargement

Concepts associés

Chargement

Cours associés

Chargement

Séances de cours associées

Chargement

MOOCs associés (9)
Conversion electromécanique I
Circuits magnétiques, aimants permanents, conversion électromécanique, actionneurs.
Conversion electromécanique I
Circuits magnétiques, aimants permanents, conversion électromécanique, actionneurs.
Conversion electromécanique II
Principes de fonctionnement, construction, calcul et applications des moteurs electriques.
Afficher plus