In statistics, polynomial regression is a form of regression analysis in which the relationship between the independent variable x and the dependent variable y is modelled as an nth degree polynomial in x. Polynomial regression fits a nonlinear relationship between the value of x and the corresponding conditional mean of y, denoted E(y |x). Although polynomial regression fits a nonlinear model to the data, as a statistical estimation problem it is linear, in the sense that the regression function E(y | x) is linear in the unknown parameters that are estimated from the data. For this reason, polynomial regression is considered to be a special case of multiple linear regression.
The explanatory (independent) variables resulting from the polynomial expansion of the "baseline" variables are known as higher-degree terms. Such variables are also used in classification settings.
Polynomial regression models are usually fit using the method of least squares. The least-squares method minimizes the variance of the unbiased estimators of the coefficients, under the conditions of the Gauss–Markov theorem. The least-squares method was published in 1805 by Legendre and in 1809 by Gauss. The first design of an experiment for polynomial regression appeared in an 1815 paper of Gergonne. In the twentieth century, polynomial regression played an important role in the development of regression analysis, with a greater emphasis on issues of design and inference. More recently, the use of polynomial models has been complemented by other methods, with non-polynomial models having advantages for some classes of problems.
The goal of regression analysis is to model the expected value of a dependent variable y in terms of the value of an independent variable (or vector of independent variables) x. In simple linear regression, the model
is used, where ε is an unobserved random error with mean zero conditioned on a scalar variable x. In this model, for each unit increase in the value of x, the conditional expectation of y increases by β1 units.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
This course aims to introduce the basic principles of machine learning in the context of the digital humanities. We will cover both supervised and unsupervised learning techniques, and study and imple
Machine learning and data analysis are becoming increasingly central in many sciences and applications. In this course, fundamental principles and methods of machine learning will be introduced, analy
In the design of experiments, optimal designs (or optimum designs) are a class of experimental designs that are optimal with respect to some statistical criterion. The creation of this field of statistics has been credited to Danish statistician Kirstine Smith. In the design of experiments for estimating statistical models, optimal designs allow parameters to be estimated without bias and with minimum variance. A non-optimal design requires a greater number of experimental runs to estimate the parameters with the same precision as an optimal design.
En statistiques, en économétrie et en apprentissage automatique, un modèle de régression linéaire est un modèle de régression qui cherche à établir une relation linéaire entre une variable, dite expliquée, et une ou plusieurs variables, dites explicatives. On parle aussi de modèle linéaire ou de modèle de régression linéaire. Parmi les modèles de régression linéaire, le plus simple est l'ajustement affine. Celui-ci consiste à rechercher la droite permettant d'expliquer le comportement d'une variable statistique y comme étant une fonction affine d'une autre variable statistique x.
vignette|La fonction 1-x^2-2exp(-100x^2) (rouge) et les valeurs déplacées par un bruit de 0,1*N(0,1). Le classement automatique ou classification supervisée est la catégorisation algorithmique d'objets. Elle consiste à attribuer une classe ou catégorie à chaque objet (ou individu) à classer, en se fondant sur des données statistiques. Elle fait couramment appel à l'apprentissage automatique et est largement utilisée en reconnaissance de formes. En français, le classement fait référence à l'action de classer donc de « ranger dans une classe ».
Couvre l'analyse de régression pour les données de désassemblage à l'aide de la modélisation de régression linéaire, des transformations, des interprétations des coefficients et des modèles linéaires généralisés.
Explore les techniques d'apprentissage automatique pour la régression non linéaire et la prévision des tendances dans des ensembles de données complexes.
Herein, machine learning (ML) models using multiple linear regression (MLR), support vector regression (SVR), random forest (RF) and artificial neural network (ANN) are developed and compared to predict the output features viz. specific capacitance (Csp), ...
In light of the challenges posed by climate change and the goals of the Paris Agreement, electricity generation is shifting to a more renewable and decentralized pattern, while the operation of systems like buildings is increasingly electrified. This calls ...
Climate-change-induced extreme weather events increase heat-related mortality and health risks for urbanites, which may also affect urbanites’ expressed happiness (EH) and well-being. However, the links among EH, climate, and socioeconomic factors remain u ...