In mathematics a stack or 2-sheaf is, roughly speaking, a sheaf that takes values in categories rather than sets. Stacks are used to formalise some of the main constructions of descent theory, and to construct fine moduli stacks when fine moduli spaces do not exist.
Descent theory is concerned with generalisations of situations where isomorphic, compatible geometrical objects (such as vector bundles on topological spaces) can be "glued together" within a restriction of the topological basis. In a more general set-up the restrictions are replaced with ; then make a good framework to discuss the possibility of such gluing. The intuitive meaning of a stack is that it is a fibred category such that "all possible gluings work". The specification of gluings requires a definition of coverings with regard to which the gluings can be considered. It turns out that the general language for describing these coverings is that of a Grothendieck topology. Thus a stack is formally given as a fibred category over another base category, where the base has a Grothendieck topology and where the fibred category satisfies a few axioms that ensure existence and uniqueness of certain gluings with respect to the Grothendieck topology.
Stacks are the underlying structure of algebraic stacks (also called Artin stacks) and Deligne–Mumford stacks, which generalize schemes and algebraic spaces and which are particularly useful in studying moduli spaces. There are inclusions: schemes ⊆ algebraic spaces ⊆ Deligne–Mumford stacks ⊆ algebraic stacks (Artin stacks) ⊆ stacks. and give a brief introductory accounts of stacks, , and give more detailed introductions, and describes the more advanced theory.
The concept of stacks has its origin in the definition of effective descent data in .
In a 1959 letter to Serre, Grothendieck observed that a fundamental obstruction to constructing good moduli spaces is the existence of automorphisms. A major motivation for stacks is that if a moduli space for some problem does not exist because of the existence of automorphisms, it may still be possible to construct a moduli stack.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
The microstructure of many alloys and ceramics are constituted of very fine intricate domains (variants) created by diffusive or displacive phase transformations. The course introduces the crystallogr
We will study classical and modern deformation theory of schemes and coherent sheaves. Participants should have a solid background in scheme-theory, for example being familiar with the first 3 chapter
This is a course about group schemes, with an emphasis on structural theorems for algebraic groups (e.g. Barsotti--Chevalley's theorem). All the basics will be covered towards the proof of such theore
In mathematics, the flat topology is a Grothendieck topology used in algebraic geometry. It is used to define the theory of flat cohomology; it also plays a fundamental role in the theory of (faithfully flat descent). The term flat here comes from flat modules. There are several slightly different flat topologies, the most common of which are the fppf topology and the fpqc topology. fppf stands for fidèlement plate de présentation finie, and in this topology, a morphism of affine schemes is a covering morphism if it is faithfully flat and of finite presentation.
En géométrie algébrique, le groupe de Picard est un groupe associé à une variété algébrique ou plus généralement à un schéma. Il est en général isomorphe au groupe des diviseurs de Cartier. Si K est un corps de nombres, le groupe de Picard de l'anneau des entiers de K n'est autre que le groupe des classes de K. Pour les courbes algébriques et les variétés abéliennes, le groupe de Picard (ou plutôt le foncteur de Picard) permet de construire respectivement la jacobienne et la variété abélienne duale.
Fibred categories (or fibered categories) are abstract entities in mathematics used to provide a general framework for descent theory. They formalise the various situations in geometry and algebra in which inverse images (or pull-backs) of objects such as vector bundles can be defined. As an example, for each topological space there is the category of vector bundles on the space, and for every continuous map from a topological space X to another topological space Y is associated the pullback functor taking bundles on Y to bundles on X.
We prove the bigness of the Chow-Mumford line bundle associated to a Q-Gorenstein family of log Fano varieties of maximal variation with uniformly K-stable general geometric fibers. This result generalizes a theorem of Codogni and Patakfalvi to the logarit ...
We develop a framework to construct moduli spaces of Q-Gorenstein pairs. To do so, we fix certain invariants; these choices are encoded in the notion of Q-stable pair. We show that these choices give a proper moduli space with projective coarse moduli spac ...
Providence2024
A toric variety is called fibered if it can be represented as a total space of fibre bundle over toric base and with toric fiber. Fibered toric varieties form a special case of toric variety bundles. In this note we first give an introduction to the class ...