In mathematics, the flat topology is a Grothendieck topology used in algebraic geometry. It is used to define the theory of flat cohomology; it also plays a fundamental role in the theory of (faithfully flat descent). The term flat here comes from flat modules.
There are several slightly different flat topologies, the most common of which are the fppf topology and the fpqc topology. fppf stands for fidèlement plate de présentation finie, and in this topology, a morphism of affine schemes is a covering morphism if it is faithfully flat and of finite presentation. fpqc stands for fidèlement plate et quasi-compacte, and in this topology, a morphism of affine schemes is a covering morphism if it is faithfully flat. In both categories, a covering family is defined be a family which is a cover on Zariski open subsets. In the fpqc topology, any faithfully flat and quasi-compact morphism is a cover. These topologies are closely related to . The "pure" faithfully flat topology without any further finiteness conditions such as quasi compactness or finite presentation is not used much as is not subcanonical; in other words, representable functors need not be sheaves.
Unfortunately the terminology for flat topologies is not standardized. Some authors use the term "topology" for a pretopology, and there are several slightly different pretopologies sometimes called the fppf or fpqc (pre)topology, which sometimes give the same topology.
Flat cohomology was introduced by Grothendieck in about 1960.
Let X be an affine scheme. We define an fppf cover of X to be a finite and jointly surjective family of morphisms
(φa : Xa → X)
with each Xa affine and each φa flat, finitely presented. This generates a pretopology: for X arbitrary, we define an fppf cover of X to be a family
(φa : Xa → X)
which is an fppf cover after base changing to an open affine subscheme of X. This pretopology generates a topology called the fppf topology. (This is not the same as the topology we would get if we started with arbitrary X and Xa and took covering families to be jointly surjective families of flat, finitely presented morphisms.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
In mathematics a stack or 2-sheaf is, roughly speaking, a sheaf that takes values in categories rather than sets. Stacks are used to formalise some of the main constructions of descent theory, and to construct fine moduli stacks when fine moduli spaces do not exist. Descent theory is concerned with generalisations of situations where isomorphic, compatible geometrical objects (such as vector bundles on topological spaces) can be "glued together" within a restriction of the topological basis.
En mathématiques, un topos (au pluriel topos ou topoï) est un type particulier de catégorie. La théorie des topoï est polyvalente et est utilisée dans des domaines aussi variés que la logique, la topologie ou la géométrie algébrique. Un topos peut être défini comme une catégorie pourvue : de limites et colimites finies ; d'exponentielles ; d'un . D'autres définitions équivalentes sont données plus bas.
La cohomologie étale est la théorie cohomologique des faisceaux associée à la topologie étale. Elle mime le comportement habituel de la cohomologie classique sur des objets mathématiques où celle-ci n'est pas envisageable, en particulier les schémas et les espaces analytiques. La cohomologie étale a été introduite pour les schémas par Alexander Grothendieck et Michael Artin dans SGA 4 et 41⁄2, avec l'objectif de réaliser une cohomologie de Weil et ainsi résoudre les conjectures de Weil, objectif partiellement rempli, plus tard complété par Pierre Deligne avec l'introduction de la cohomologie l-adique.
K-Theory was originally defined by Grothendieck as a contravariant functor from a subcategory of schemes to abelian groups, known today as K0. The same kind of construction was then applied to other fields of mathematics, like spaces and (not necessarily c ...
As Avez showed (in 1970), the fundamental group of a compact Riemannian manifold of nonpositive sectional curvature has exponential growth if and only if it is not flat. After several generalizations from Gromov, Zimmer, Anderson, Burger and Shroeder, the ...