Le système hexadécimal est un système de numération positionnel en base 16. Il utilise ainsi 16 symboles, en général les chiffres arabes pour les dix premiers chiffres et les lettres A à F pour les six suivants (en majuscule ou minuscule). Le système hexadécimal est utilisé notamment en électronique numérique et en informatique car il est particulièrement commode et permet un compromis entre le code binaire des machines et une base de numération pratique à utiliser pour les ingénieurs. En effet, chaque chiffre hexadécimal correspond exactement à quatre chiffres binaires (ou bits), rendant les conversions très simples et fournissant une écriture plus compacte. L'hexadécimal a été utilisé la première fois en 1956 par les ingénieurs de l'ordinateur Bendix G-15. Le système hexadécimal nécessite l'introduction de 16 symboles représentant les 16 premiers entiers naturels, appelés chiffres hexadécimaux : 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E et F. Un entier s'écrit comme la concaténation de ces chiffres, et sa lecture s'effectue de droite à gauche. Sa valeur vaut la somme des chiffres affectés de poids correspondant aux puissances successives du nombre 16. Par exemple, 4D5 vaut (5 × 16 + 13 × 16 + 4 × 16) = . Le système hexadécimal est largement utilisé en informatique car il permet une conversion sans aucun calcul avec le système binaire, système employé par les ordinateurs, du fait que 16 est une puissance de 2. Comme 16 = 24, à un chiffre en base 16 correspondent exactement quatre chiffres dans la base 2, et il est possible de traduire du binaire vers de l'hexadécimal en groupant les chiffres binaires 4 par 4, et de l'hexadécimal vers le binaire simplement en traduisant chaque chiffre hexadécimal. Un octet (8 chiffres binaires) s'écrit avec 2 chiffres hexadécimaux. Par exemple l'octet qui représente la lettre A en ASCII s'écrit 4116 en système hexadécimal, soit 010000012 en binaire (01002 pour 4 et 00012 pour 1).

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (3)
CS-101: Advanced information, computation, communication I
Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a
ME-213: Programmation pour ingénieur
Mettre en pratique les bases de la programmation vues au semestre précédent. Développer un logiciel structuré. Méthode de debug d'un logiciel. Introduction à la programmation scientifique. Introductio
CS-208: Computer architecture I
The course introduces the students to the basic notions of computer architecture and, in particular, to the choices of the Instruction Set Architecture and to the memory hierarchy of modern systems.
Séances de cours associées (26)
Théorie des nombres : représentation entière
Couvre la représentation des entiers en utilisant différentes bases et la conversion entre elles.
Opérations binaires : ajout et multiplication
Couvre les opérations binaires, y compris l'addition et la multiplication d'entiers représentés sous forme binaire.
Théorie des nombres : représentation entière
Couvre la représentation des entiers en utilisant différentes bases et algorithmes pour l'expansion de la base.
Afficher plus
Publications associées (7)

Additive and geometric transversality of fractal sets in the integers

Florian Karl Richter

By juxtaposing ideas from fractal geometry and dynamical systems, Furstenberg proposed a series of conjectures in the late 1960's that explore the relationship between digit expansions with respect to multiplicatively independent bases. In this work, we in ...
2024

Additive and geometric transversality of fractal sets in the integers

Florian Karl Richter

By juxtaposing ideas from fractal geometry and dynamical systems, Furstenberg proposed a series of conjectures in the late 1960's that explore the relationship between digit expansions with respect to multiplicatively independent bases. In this work, we in ...
2021

Designing modeling notations readers understand

George Popescu

[Context] IT modelers create models to communicate their conceptualization of an organization and to facilitate the collaboration between business and IT people. The story they convey in their models is how the corporate IT systems fulfill the business peo ...
EPFL2016
Afficher plus
Concepts associés (32)
Système binaire
Le système binaire (du latin binārĭus, « double ») est le système de numération utilisant la base 2. On nomme couramment bit (de l'anglais binary digit, soit « chiffre binaire ») les chiffres de la numération binaire positionnelle. Un bit peut prendre deux valeurs, notées par convention 0 et 1. Le système binaire est utile pour représenter le fonctionnement de l'électronique numérique utilisée dans les ordinateurs. Il est donc utilisé par les langages de programmation de bas niveau.
Unicode
vignette|Logo Unicode.|200x200px Unicode est un standard informatique qui permet des échanges de textes dans différentes langues, à un niveau mondial. Il est développé par le Consortium Unicode, qui vise au codage de texte écrit en donnant à tout caractère de n'importe quel système d'écriture un nom et un identifiant numérique, et ce de manière unifiée, quels que soient la plateforme informatique ou le logiciel utilisé. Ce standard est lié à la norme qui décrit une table de caractères équivalente.
Système de numération
vignette|Table d'équivalence entre le système de numération de Kaktovik (utilisant une base 20) et le système décimal. Un système de numération est un ensemble de règles qui régissent une, voire plusieurs numérations données. De façon plus explicite, c'est un ensemble de règles d'utilisation des signes, des mots ou des gestes permettant d'écrire, d'énoncer ou de mimer les nombres, ces derniers étant nés, sous leur forme écrite, en même temps que l'écriture, de la nécessité d'organiser les récoltes, le commerce et la datation.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.