Histoire de la relativité restreinteL’histoire de la relativité restreinte décrit le développement de propositions et constatations empiriques et conceptuelles, au sein de la physique théorique, qui ont permis d’aboutir à une nouvelle compréhension de l’espace et du temps. Cette théorie, nommée « relativité restreinte », se distingue des travaux ultérieurs d'Albert Einstein, appelés « relativité générale ». Dans ses Principia mathematica, publiés pour la première fois en 1687 et qui influencent la physique pendant 200 ans, Isaac Newton postule les notions d'espace et de temps absolus et pose la théorie corpusculaire de la lumière.
Rigidité de BornLe critère de rigidité de Born désigne un concept de relativité restreinte introduit par le physicien allemand Max Born. Ce critère permet de définir un équivalent relativiste du concept de corps rigide utilisé en mécanique classique. Classiquement, un corps est considéré comme rigide si la distance entre deux points donnés ne varie pas au cours du temps. Du fait de la contraction des longueurs, cette notion de distance constante n'est plus utilisable en relativité.
Frame fields in general relativityA frame field in general relativity (also called a tetrad or vierbein) is a set of four pointwise-orthonormal vector fields, one timelike and three spacelike, defined on a Lorentzian manifold that is physically interpreted as a model of spacetime. The timelike unit vector field is often denoted by and the three spacelike unit vector fields by . All tensorial quantities defined on the manifold can be expressed using the frame field and its dual coframe field.
Singularité de SchwarzschildLa singularité de Schwarzschild est le comportement divergent de la métrique de Schwarzschild quand . Il ne faut pas la confondre avec la singularité gravitationnelle d'un trou noir. Cette singularité n'est qu'apparente : elle se manifeste dans l'expression classique de cette métrique, mais pas dans d'autres. On considère donc que c'est une singularité mathématique pour la métrique classique de Schwarzschild, mais que ce n'est pas une singularité physique.
Évaporation des trous noirsL'évaporation des trous noirs, qui se traduit par le rayonnement de Hawking (dit aussi de Bekenstein-Hawking), est le phénomène selon lequel un observateur regardant un trou noir peut détecter un infime rayonnement de corps noir, évaporation des trous noirs, émanant de la zone proche de son horizon des événements. Il a été prédit par Stephen Hawking en 1975 et est considéré comme l'une de ses plus importantes réalisations.
Principe d'équivalenceOn énumère en général trois principes d'équivalence : le principe « faible », celui d'Einstein et le principe « fort ». Le premier est le constat de l'égalité entre la masse inertielle et la masse gravitationnelle. Albert Einstein présente le second comme une « interprétation » du premier en termes d'équivalence locale entre la gravitation et l'accélération (elles sont localement indistinguables) ; c'est un élément clé de la construction de la relativité générale.