Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Event-driven acquisition uses neural-network-based recognition of specific biological events to trigger switching between slow and fast super-resolution imaging, enriching the capture of interesting events with high spatiotemporal resolution. A common goal ...
We study the behaviour of a natural measure defined on the leaves of the genealogical tree of some branching processes, namely self-similar growth-fragmentation processes. Each particle, or cell, is attributed a positive mass that evolves in continuous tim ...
For compact, isometrically embedded Riemannian manifolds N -> R-L, we introduce a fourth-order version of the wave maps equation. By energy estimates, we prove an a priori estimate for smooth local solutions in the energy subcritical dimension n = 1, 2. Th ...
We determine the exact Hausdorff measure functions for the range and level sets of a class of Gaussian random fields satisfying sectorial local nondeterminism and other assumptions. We also establish a Chung-type law of the iterated logarithm. The results ...
This work presents a new dynamic modelling approach for calcium looping systems that allows explicit sorbent deactivation and purge/makeup. These are common in plant operations, but often neglected in modelling. This model adopts a Monte Carlo approach, tr ...
We propose a stochastic conditional gradient method (CGM) for minimizing convex finitesum objectives formed as a sum of smooth and non-smooth terms. Existing CGM variants for this template either suffer from slow convergence rates, or require carefully inc ...
We present a combination technique based on mixed differences of both spatial approximations and quadrature formulae for the stochastic variables to solve efficiently a class of Optimal Control Problems (OCPs) constrained by random partial differential equ ...
Global spectral methods offer the potential to compute solutions of partial differential equations numerically to very high accuracy. In this work, we develop a novel global spectral method for linear partial differential equations on cubes by extending th ...
Neural-network quantum states (NQS) have been shown to be a suitable variational ansatz to simulate out-of-equilibrium dynamics in two-dimensional systems using timedependent variational Monte Carlo (t-VMC). In particular, stable and accurate time propagat ...
Sharpness-Aware Minimization (SAM) is a recent training method that relies on worst-case weight perturbations which significantly improves generalization in various settings. We argue that the existing justifications for the success of SAM which are based ...