In theoretical physics, a no-go theorem is a theorem that states that a particular situation is not physically possible. Specifically, the term describes results in quantum mechanics like Bell's theorem and the Kochen–Specker theorem that constrain the permissible types of hidden variable theories which try to explain the apparent randomness of quantum mechanics as a deterministic model featuring hidden states. Full descriptions of the no-go theorems named below are given in other articles linked to their names. A few of them are broad, general categories under which several theorems fall. Other names are broad and general-sounding but only refer to a single theorem. Antidynamo theorems is a general category of theorems that restrict the type of magnetic fields that can be produced by dynamo action. Cowling's theorem states that an axisymmetric magnetic field cannot be maintained through a self-sustaining dynamo action by an axially symmetric current. Earnshaw's theorem states that a collection of point charges cannot be maintained in a stable stationary equilibrium configuration solely by the electrostatic interaction of the charges. Bell's theorem Kochen–Specker theorem PBR theorem No-hiding theorem No-cloning theorem Quantum no-deleting theorem No-teleportation theorem No-broadcast theorem The no-communication theorem in quantum information theory gives conditions under which instantaneous transfer of information between two observers is impossible. No-programming theorem Weinberg–Witten theorem states that massless particles (either composite or elementary) with spin cannot carry a Lorentz-covariant current, while massless particles with spin cannot carry a Lorentz-covariant stress-energy. It is usually interpreted to mean that the graviton () in a relativistic quantum field theory cannot be a composite particle. Nielsen–Ninomiya theorem limits when it is possible to formulate a chiral lattice theory for fermions. Haag's theorem states that the interaction picture does not exist in an interacting, relativistic, quantum field theory (QFT).

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Séances de cours associées (9)
Introduction à l'informatique quantique
Couvre les bases de l'informatique quantique, y compris les circuits quantiques et des exemples clés.
Introduction à l'informatique quantique
Couvre les bases de l'informatique quantique, y compris les portes, les mesures et les exemples clés.
Théorie des systèmes discrets
Couvre les équations de différence, les systèmes dynamiques, la linéarité et la réponse impulsionnelle dans des systèmes discrets.
Afficher plus
Concepts associés (3)
No-communication theorem
In physics, the no-communication theorem or no-signaling principle is a no-go theorem from quantum information theory which states that, during measurement of an entangled quantum state, it is not possible for one observer, by making a measurement of a subsystem of the total state, to communicate information to another observer. The theorem is important because, in quantum mechanics, quantum entanglement is an effect by which certain widely separated events can be correlated in ways that, at first glance, suggest the possibility of communication faster-than-light.
No-teleportation theorem
In quantum information theory, the no-teleportation theorem states that an arbitrary quantum state cannot be converted into a sequence of classical bits (or even an infinite number of such bits); nor can such bits be used to reconstruct the original state, thus "teleporting" it by merely moving classical bits around. Put another way, it states that the unit of quantum information, the qubit, cannot be exactly, precisely converted into classical information bits.
Impossibilité du clonage quantique
Le théorème d'impossibilité du clonage quantique est un résultat de mécanique quantique qui interdit la copie à l'identique d'un état quantique inconnu et arbitraire. Il a été énoncé en 1982 par Wootters, Zurek, et Dieks. Ce théorème a d'importantes conséquences en informatique quantique. Par exemple, il fait en sorte qu'il est impossible d'adapter un code quantique directement du code de répétition de la théorie des codes classique. Ceci rend la tâche d'élaborer un code quantique difficile par rapport aux codes classiques.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.