MATH-436: Homotopical algebraThis course will provide an introduction to model category theory, which is an abstract framework for generalizing homotopy theory beyond topological spaces and continuous maps. We will study numerous
MATH-506: Topology IV.b - cohomology ringsSingular cohomology is defined by dualizing the singular chain complex for spaces. We will study its basic properties, see how it acquires a multiplicative structure and becomes a graded commutative a
MATH-410: Riemann surfacesThis course is an introduction to the theory of Riemann surfaces. Riemann surfaces naturally appear is mathematics in many different ways: as a result of analytic continuation, as quotients of complex
MATH-323: Topology III - HomologyHomology is one of the most important tools to study topological spaces and it plays an important role in many fields of mathematics. The aim of this course is to introduce this notion, understand its
MATH-687: Algebraic models for homotopy typesln this course we will develop algebraic and coalgebraic models for homotopy types.
Among other things we will learn about Quillen's and Sullivan's model of rationâl homotopy types and about Mandell's