En mathématiques, et plus particulièrement en analyse et en géométrie, le théorème de Hahn-Banach, dû aux deux mathématiciens Hans Hahn et Stefan Banach, est un théorème d'existence de prolongements de formes linéaires satisfaisant à certaines conditions. En permettant de prouver abstraitement l'existence de nombreuses fonctions continues, c'est un outil fondamental de l'analyse fonctionnelle. Par son interprétation géométrique en termes d'hyperplans évitant un convexe fixé, il joue également un rôle primordial dans l'étude de la géométrie des convexes, et au-delà en analyse convexe. Les énoncés dénommés « théorème de Hahn-Banach » dans la littérature scientifique sont nombreux, différant les uns des autres parfois par de simples détails et parfois de façon significative. Ils se divisent néanmoins nettement en deux classes : certains garantissent de pouvoir prolonger une forme linéaire, sous certaines exigences de majoration (les formes « analytiques » du théorème) ; d'autres assurent qu'on peut séparer deux ensembles convexes par un hyperplan affine (les formes « géométriques » du théorème). Donnons pour commencer un exemple d'énoncé pour chacune de ces deux catégories. La forme analytique du théorème est due à Banach (1932) généralisant un résultat de Hahn qui s'intéresse dès 1920 aux espaces vectoriels normés. Il existe une généralisation du théorème de Hahn-Banach aux espaces vectoriels sur le corps des complexes due à H. Frederic Bohnenblust et Andrew F. Sobczyk (1938). Les difficultés de la généralisation du théorème de Hahn-Banach apparaissent même pour des espaces vectoriels de dimension finie. La forme géométrique du théorème — d'où l'on peut ensuite déduire une succession de variantes diverses relatives à la séparation des convexes — est la retranscription de la forme analytique pour le cas particulier où la fonction convexe qui y intervient est la jauge d'un ouvert convexe d'un espace normé. C'est d'ailleurs le cas dans les utilisations les plus simples et fondamentales du théorème en analyse fonctionnelle qu'on peut selon ses goûts lire depuis une version ou l'autre (on en verra un exemple plus bas).

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.