En traitement du signal, un bruit gaussien est un bruit dont la densité de probabilité est une distribution gaussienne (loi normale). L'adjectif gaussien fait référence au mathématicien, astronome et physicien allemand Carl Friedrich Gauss.
La densité de probabilité d'une variable aléatoire gaussienne est la fonction :
où représente le niveau de gris, la valeur de gris moyenne et son écart type.
Un cas particulier est le bruit blanc gaussien, dans lequel les valeurs à toute paire de temps sont identiquement distribuées et statistiquement indépendantes (et donc ). Dans les tests et la modélisation des canaux de communication, le bruit gaussien est utilisé comme bruit blanc additif pour générer un bruit additif blanc gaussien.
Dans le domaine des télécommunications et des réseaux informatiques, les canaux de communication peuvent être affectés par du bruit gaussien à provenant de nombreuses sources naturelles, telles que les vibrations thermiques des atomes dans les conducteurs (appelées bruit thermique ou bruit de Johnson-Nyquist), le bruit de grenaille, le rayonnement du corps noir de la terre et d'autres objets chauds, et de sources célestes telles que le soleil.
Les principales sources de bruit gaussien dans les se produisent pendant l'acquisition, par exemple le bruit du capteur causé par un mauvais éclairage et/ou une température élevée, et/ou la transmission, par exemple le . Dans le , le bruit gaussien peut être réduit en utilisant un filtrage spatial, bien que lors du lissage d'une image, un résultat indésirable puisse résulter dans le flou des bords et des détails de l'image à échelle fine, car ils correspondent également à des hautes fréquences bloquées. Les techniques conventionnelles de filtrage spatial pour le débruitage comprennent : le filtrage moyen (convolution), le filtre médian et le .
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Building up on the basic concepts of sampling, filtering and Fourier transforms, we address stochastic modeling, spectral analysis, estimation and prediction, classification, and adaptive filtering, w
The course deals with the concept of measuring in different domains, particularly in the electrical, optical, and microscale domains. The course will end with a perspective on quantum measurements, wh
Dans une , on appelle bruit numérique toute fluctuation parasite ou dégradation que subit l'image de l'instant de son acquisition jusqu'à son enregistrement. Le bruit numérique est une notion générale à tout type d'image numérique, et ce quel que soit le type du capteur à l'origine de son acquisition (appareil photo numérique, scanner, caméra thermique...etc). Les sources de bruit numérique sont multiples, certaines sont physiques liées à la qualité de l’éclairage, de la scène, la température du capteur, la stabilité du capteur de l'image durant l'acquisition, d'autres apparaissent durant la numérisation de l'information.
Le filtre médian est un filtre numérique non linéaire, souvent utilisé pour la réduction de bruit. La réduction de bruit est une étape de prétraitement classique visant à améliorer les résultats de traitements futurs (détection de bords par exemple). La technique de filtre médian est largement utilisée en numériques car il permet sous certaines conditions de réduire le bruit tout en conservant les contours de l'image. L'idée principale du filtre médian est de remplacer chaque entrée par la valeur médiane de son voisinage.
Le débruitage est une technique d'édition qui consiste à supprimer des éléments indésirables (« bruit »), afin de rendre un document, un signal (numérique ou analogique) ou un environnement plus intelligible ou plus pur. Ne pas confondre le débruitage avec la réduction de bruit. Sur le plan sonore, le débruitage consiste à réduire ou anéantir le rendu d'ondes sonores « parasites » (ou « bruit »).
A key challenge across many disciplines is to extract meaningful information from data which is often obscured by noise. These datasets are typically represented as large matrices. Given the current trend of ever-increasing data volumes, with datasets grow ...
We study the hitting probabilities of the solution to a system of d stochastic heat equations with additive noise subject to Dirichlet boundary conditions. We show that for any bounded Borel set with positive (d-6)\documentclass[12pt]{minimal} \usepackage{ ...
Springer/Plenum Publishers2024
Information theory has allowed us to determine the fundamental limit of various communication and algorithmic problems, e.g., the channel coding problem, the compression problem, and the hypothesis testing problem. In this work, we revisit the assumptions ...