In the study of Dirac fields in quantum field theory, Richard Feynman invented the convenient Feynman slash notation (less commonly known as the Dirac slash notation). If A is a covariant vector (i.e., a 1-form),
where γ are the gamma matrices. Using the Einstein summation notation, the expression is simply
Using the anticommutators of the gamma matrices, one can show that for any and ,
where is the identity matrix in four dimensions.
In particular,
Further identities can be read off directly from the gamma matrix identities by replacing the metric tensor with inner products. For example,
where:
is the Levi-Civita symbol
is the Minkowski metric
is a scalar.
This section uses the (+ − − −) metric signature. Often, when using the Dirac equation and solving for cross sections, one finds the slash notation used on four-momentum: using the Dirac basis for the gamma matrices,
as well as the definition of contravariant four-momentum in natural units,
we see explicitly that
Similar results hold in other bases, such as the Weyl basis.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
The course introduces the paradigm of quantum computation in an axiomatic way. We introduce the notion of quantum bit, gates, circuits and we treat the most important quantum algorithms. We also touch
Introduction to the path integral formulation of quantum mechanics. Derivation of the perturbation expansion of Green's functions in terms of Feynman diagrams. Several applications will be presented,
In quantum field theory, a fermionic field is a quantum field whose quanta are fermions; that is, they obey Fermi–Dirac statistics. Fermionic fields obey canonical anticommutation relations rather than the canonical commutation relations of bosonic fields. The most prominent example of a fermionic field is the Dirac field, which describes fermions with spin-1/2: electrons, protons, quarks, etc. The Dirac field can be described as either a 4-component spinor or as a pair of 2-component Weyl spinors.
Les matrices de Dirac sont des matrices qui furent introduites par Paul Dirac, lors de la recherche d'une équation d'onde relativiste de l'électron. Le pendant relativiste de l'équation de Schrödinger est l'équation de Klein-Gordon. Celle-ci décrit des particules de spin 0 et ne convient pas pour les électrons qui sont de spin 1/2. Dirac essaya alors de trouver une équation linéaire comme celle de Schrödinger sous la forme : où est une fonction d'onde vectorielle, la masse de la particule, l'hamiltonien, sont respectivement un vecteur de matrices hermitiques et une matrice hermitique, et i désigne l'unité imaginaire.
L'équation de Majorana est une similaire à l'équation de Dirac mais inclut la charge conjuguée Ψc d'un spineur Ψ. Cette équation porte le nom de l'italien Ettore Majorana, et dans les unités naturelles, elle s'exprime par écrit avec la notation de Feynman, où la charge conjuguée est définie par L'équation (1) peut s'exprimer autrement par Si une particule a un spineur de fonction d'onde Ψ qui satisfait l'équation de Majorana, alors la grandeur m de l'équation est appelé la masse de Majorana.
Explore les degrés discrets et continus de liberté, les relations de commutation canoniques et la correspondance entre la mécanique classique et quantique.