Concept

Graphe de Heawood

En théorie des graphes, le graphe de Heawood est un graphe cubique symétrique possédant 14 sommets et 21 arêtes. Il doit son nom à Percy John Heawood, un mathématicien britannique né en 1861 et mort en 1955. Le graphe de Heawood est une (3,6)-cage, c'est-à-dire un graphe minimal en nombres de sommets ayant une maille de 6 et étant cubique. En fait, il s'agit de l'unique (3,6)-cage et sa taille coïncide avec la borne de Moore, une borne inférieure sur le nombre de sommets que peut avoir une cage. Un tel graphe est qualifié de graphe de Moore. Le diamètre du graphe de Heawood et son rayon sont tous deux égaux à 3. Cela entraîne que tous ses sommets appartiennent à son centre. Le graphe de Heawood est 3-sommet-connexe et 3-arête-connexe, c'est-à-dire qu'il est connexe et que pour le rendre déconnecté il faut le priver au minimum de 3 sommets ou de 3 arêtes. Comme il est régulier de degrés 3 ce nombre est optimal. Le graphe de Heawood est donc un graphe optimalement connecté. Il est également hamiltonien, c'est-à-dire qu'il possède un cycle passant par tous les sommets une et une seule fois. Le graphe de Heawood n'est pas planaire. En fait pour le dessiner sur un plan il faut nécessairement que plusieurs arêtes se croisent. Il est possible de le dessiner avec seulement 3 croisements et ce nombre est minimal. En fait, d'après Pegg et Exoo, le graphe de Heawood, avec ses 14 sommets, serait le plus petit graphe cubique nécessitant 3 croisements pour être dessiné sur le plan. Le graphe de Heawood peut par contre être plongé sur le tore, c'est donc un graphe toroïdal. Le nombre chromatique du graphe de Heawood est 2. C'est-à-dire qu'il est possible de le colorer avec 2 couleurs de telle façon que deux sommets reliés par une arête soient toujours de couleurs différentes. Ce nombre est minimal. L'indice chromatique du graphe de Heawood est 3. Il existe donc une 3-coloration des arêtes du graphe telle que deux arêtes incidentes à un même sommet soient toujours de couleurs différentes. Ce nombre est minimal.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Séances de cours associées (2)
Groupes de Coxeter: Équivalence géométrique et graphiques définis positifs
Explore l'équivalence géométrique des groupes de Coxeter avec le même graphique et des matrices définies positives.
Afficher plus
Publications associées (3)

Intersection Patterns of Edges in Topological Graphs

Radoslav Fulek

This thesis is devoted to crossing patterns of edges in topological graphs. We consider the following four problems: A thrackle is a graph drawn in the plane such that every pair of edges meet exactly once: either at a common endpoint or in a proper crossi ...
EPFL2012

On coloring problems with local constraints

Yuri Faenza

We deal with some generalizations of the graph coloring problem on classes of perfect graphs. Namely we consider the μ-coloring problem (upper bounds for the color on each vertex), the precoloring extension problem (a subset of vertices colored beforehand) ...
Elsevier2012

On canonical representation of convex polyhedra

Stefano Picozzi

Convex polyhedra are important objects in various areas of mathematics and other disciplines. A fundamental result, known as Minkowski-Weyl theorem, states that every polyhedron admits two types of representations, either as the solution set to a finite sy ...
EPFL2005
Concepts associés (15)
Graphe de Coxeter
En théorie des graphes, le graphe de Coxeter est un graphe cubique symétrique à 28 sommets et 42 arêtes. Il est nommé en l'honneur de H.S.M. Coxeter qui l'appelait « My graph ». Le diamètre du graphe de Coxeter, l'excentricité maximale de ses sommets, est 4, son rayon, l'excentricité minimale de ses sommets, est 4 et sa maille, la longueur de son plus court cycle, est 7. Il s'agit d'un graphe 3-sommet-connexe et d'un graphe 3-arête-connexe, c'est-à-dire qu'il est connexe et que pour le rendre déconnecté il faut le priver au minimum de 3 sommets ou de 3 arêtes.
Graphe symétrique
En théorie des graphes, un graphe non orienté G=(V,E) est symétrique (ou arc-transitif) si, étant donné deux paires quelconques de sommets reliés par une arête u1—v1 et u2—v2 de G, il existe un automorphisme de graphe : tel que et . En d'autres termes, un graphe est symétrique si son groupe d'automorphismes agit transitivement sur ses paires ordonnées de sommets reliés. Un tel graphe est parfois appelé 1-arc-transitif. Par définition, un graphe symétrique sans sommet isolé est sommet-transitif et arête-transitif.
Graphe distance-transitif
En théorie des graphes, un graphe non-orienté est distance-transitif si pour tous sommets u, v, x, y tels que u et v d'une part et x et y d'autre part sont à même distance, il existe un automorphisme de graphe envoyant u sur x et v sur y. Autrement dit, un graphe est distance-transitif si son groupe d'automorphisme agit transitivement sur chacun des ensembles de paires de sommets à même distance. Tout graphe distance-transitif est distance-régulier.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.