Graphe de CoxeterEn théorie des graphes, le graphe de Coxeter est un graphe cubique symétrique à 28 sommets et 42 arêtes. Il est nommé en l'honneur de H.S.M. Coxeter qui l'appelait « My graph ». Le diamètre du graphe de Coxeter, l'excentricité maximale de ses sommets, est 4, son rayon, l'excentricité minimale de ses sommets, est 4 et sa maille, la longueur de son plus court cycle, est 7. Il s'agit d'un graphe 3-sommet-connexe et d'un graphe 3-arête-connexe, c'est-à-dire qu'il est connexe et que pour le rendre déconnecté il faut le priver au minimum de 3 sommets ou de 3 arêtes.
Graphe symétriqueEn théorie des graphes, un graphe non orienté G=(V,E) est symétrique (ou arc-transitif) si, étant donné deux paires quelconques de sommets reliés par une arête u1—v1 et u2—v2 de G, il existe un automorphisme de graphe : tel que et . En d'autres termes, un graphe est symétrique si son groupe d'automorphismes agit transitivement sur ses paires ordonnées de sommets reliés. Un tel graphe est parfois appelé 1-arc-transitif. Par définition, un graphe symétrique sans sommet isolé est sommet-transitif et arête-transitif.
Graphe distance-transitifEn théorie des graphes, un graphe non-orienté est distance-transitif si pour tous sommets u, v, x, y tels que u et v d'une part et x et y d'autre part sont à même distance, il existe un automorphisme de graphe envoyant u sur x et v sur y. Autrement dit, un graphe est distance-transitif si son groupe d'automorphisme agit transitivement sur chacun des ensembles de paires de sommets à même distance. Tout graphe distance-transitif est distance-régulier.
Nombre de croisements (théorie des graphes)vignette| Une représentation du graphe de Heawood avec trois croisements. C'est le nombre minimum de croisements parmi toutes les représentations de ce graphe, qui a donc un nombre de croisements . En théorie des graphes, le nombre de croisements d'un graphe G est le plus petit nombre d'intersections d'arêtes d'un tracé du graphe G. Par exemple, un graphe est planaire si et seulement si son nombre de croisements est nul. La détermination du nombre de croisements tient une place importante dans le tracé de graphes.
Graphe distance-régulierEn théorie des graphes, un graphe régulier est dit distance-régulier si pour tous sommets distants de , et pour tous entiers naturels , il y a toujours le même nombre de sommets qui sont à la fois à distance de et à distance de . De manière équivalente, un graphe est distance-régulier si pour tous sommets , le nombre de sommets voisins de à distance de et le nombre de sommets voisins de à distance de ne dépendent que de et de la distance entre et . Formellement, tels que et où est l’ensemble des sommets à distance de , et .
Graph embeddingIn topological graph theory, an embedding (also spelled imbedding) of a graph on a surface is a representation of on in which points of are associated with vertices and simple arcs (homeomorphic images of ) are associated with edges in such a way that: the endpoints of the arc associated with an edge are the points associated with the end vertices of no arcs include points associated with other vertices, two arcs never intersect at a point which is interior to either of the arcs. Here a surface is a compact, connected -manifold.
Book embeddingIn graph theory, a book embedding is a generalization of planar embedding of a graph to embeddings in a book, a collection of half-planes all having the same line as their boundary. Usually, the vertices of the graph are required to lie on this boundary line, called the spine, and the edges are required to stay within a single half-plane. The book thickness of a graph is the smallest possible number of half-planes for any book embedding of the graph. Book thickness is also called pagenumber, stacknumber or fixed outerthickness.
Graphe dualEn théorie des graphes, le graphe dual d'un graphe plongé dans une surface est défini à l'aide des composantes de son complémentaire, lesquelles sont reliées entre elles par les arêtes du graphe de départ. Cette notion généralise celle de dualité dans les polyèdres. Il faut noter qu'un même graphe abstrait peut avoir des graphes duaux non isomorphes en fonction du plongement choisi, même dans le cas de plongements dans le plan. Un graphe (plongé) isomorphe à son dual est dit autodual.
Graphe cubiqueEn théorie des graphes, une branche des mathématiques, un graphe cubique est un graphe régulier de degré 3. En d'autres termes, c'est un graphe dans lequel il y a exactement trois arêtes incidentes à chaque sommet. Le graphe complet K4 est le plus petit graphe cubique. Le graphe biparti complet K3,3 est le plus petit graphe cubique non-planaire. Le graphe de Petersen est le plus petit graphe cubique de maille 5. Le graphe de Heawood est le plus petit graphe cubique de maille 6.
Structure d'incidencevignette| Exemples de structures d'incidence: Exemple 1: Points et droites du plan euclidien Exemple 2: Points et cercles Exemple 3: Structure définie par une matrice d'incidence. En mathématiques, une structure d'incidence est toute composition de deux types d'objets dans le plan euclidien : des points ou l'équivalent de points et des droites ou l'équivalent de droites et d'une seule relation possible entre ces types, les autres propriétés étant ignorées et la structure pouvant ainsi se représenter par une matrice.